Artificial Intelligence

Category: Amazon Elastic Kubernetes Service

Containerize legacy Spring Boot application using Amazon Q Developer CLI and MCP server

In this post, you’ll learn how you can use Amazon Q Developer command line interface (CLI) with Model Context Protocol (MCP) servers integration to modernize a legacy Java Spring Boot application running on premises and then migrate it to Amazon Web Services (AWS) by deploying it on Amazon Elastic Kubernetes Service (Amazon EKS).

Fine-tune and deploy Meta Llama 3.2 Vision for generative AI-powered web automation using AWS DLCs, Amazon EKS, and Amazon Bedrock

In this post, we present a complete solution for fine-tuning and deploying the Llama-3.2-11B-Vision-Instruct model for web automation tasks. We demonstrate how to build a secure, scalable, and efficient infrastructure using AWS Deep Learning Containers (DLCs) on Amazon Elastic Kubernetes Service (Amazon EKS).

Beyond accelerators: Lessons from building foundation models on AWS with Japan’s GENIAC program

In 2024, the Ministry of Economy, Trade and Industry (METI) launched the Generative AI Accelerator Challenge (GENIAC)—a Japanese national program to boost generative AI by providing companies with funding, mentorship, and massive compute resources for foundation model (FM) development. AWS was selected as the cloud provider for GENIAC’s second cycle (cycle 2). It provided infrastructure and technical guidance for 12 participating organizations.

Supercharge generative AI workflows with NVIDIA DGX Cloud on AWS and Amazon Bedrock Custom Model Import

This post is co-written with Andrew Liu, Chelsea Isaac, Zoey Zhang, and Charlie Huang from NVIDIA. DGX Cloud on Amazon Web Services (AWS) represents a significant leap forward in democratizing access to high-performance AI infrastructure. By combining NVIDIA GPU expertise with AWS scalable cloud services, organizations can accelerate their time-to-train, reduce operational complexity, and unlock […]

Accelerate generative AI inference with NVIDIA Dynamo and Amazon EKS

This post introduces NVIDIA Dynamo and explains how to set it up on Amazon EKS for automated scaling and streamlined Kubernetes operations. We provide a hands-on walkthrough, which uses the NVIDIA Dynamo blueprint on the AI on EKS GitHub repo by AWS Labs to provision the infrastructure, configure monitoring, and install the NVIDIA Dynamo operator.

Use K8sGPT and Amazon Bedrock for simplified Kubernetes cluster maintenance

This post demonstrates the best practices to run K8sGPT in AWS with Amazon Bedrock in two modes: K8sGPT CLI and K8sGPT Operator. It showcases how the solution can help SREs simplify Kubernetes cluster management through continuous monitoring and operational intelligence.

Multi-account support for Amazon SageMaker HyperPod task governance

In this post, we discuss how an enterprise with multiple accounts can access a shared Amazon SageMaker HyperPod cluster for running their heterogenous workloads. We use SageMaker HyperPod task governance to enable this feature.

Architecture diagram describing Ingress access to EKS cluster for Bedrock

Build scalable containerized RAG based generative AI applications in AWS using Amazon EKS with Amazon Bedrock

In this post, we demonstrate a solution using Amazon Elastic Kubernetes Service (EKS) with Amazon Bedrock to build scalable and containerized RAG solutions for your generative AI applications on AWS while bringing your unstructured user file data to Amazon Bedrock in a straightforward, fast, and secure way.

LLM evaluation

How Hexagon built an AI assistant using AWS generative AI services

Recognizing the transformative benefits of generative AI for enterprises, we at Hexagon’s Asset Lifecycle Intelligence division sought to enhance how users interact with our Enterprise Asset Management (EAM) products. Understanding these advantages, we partnered with AWS to embark on a journey to develop HxGN Alix, an AI-powered digital worker using AWS generative AI services. This blog post explores the strategy, development, and implementation of HxGN Alix, demonstrating how a tailored AI solution can drive efficiency and enhance user satisfaction.

Architecture Diagram

Automate Amazon EKS troubleshooting using an Amazon Bedrock agentic workflow

In this post, we demonstrate how to orchestrate multiple Amazon Bedrock agents to create a sophisticated Amazon EKS troubleshooting system. By enabling collaboration between specialized agents—deriving insights from K8sGPT and performing actions through the ArgoCD framework—you can build a comprehensive automation that identifies, analyzes, and resolves cluster issues with minimal human intervention.