AWS Machine Learning Blog
Category: AWS Serverless Application Model
Automate PDF pre-labeling for Amazon Comprehend
Amazon Comprehend is a natural-language processing (NLP) service that provides pre-trained and custom APIs to derive insights from textual data. Amazon Comprehend customers can train custom named entity recognition (NER) models to extract entities of interest, such as location, person name, and date, that are unique to their business. To train a custom model, you […]
Implement backup and recovery using an event-driven serverless architecture with Amazon SageMaker Studio
Amazon SageMaker Studio is the first fully integrated development environment (IDE) for ML. It provides a single, web-based visual interface where you can perform all machine learning (ML) development steps required to build, train, tune, debug, deploy, and monitor models. It gives data scientists all the tools you need to take ML models from experimentation […]
Training and serving H2O models using Amazon SageMaker
Model training and serving steps are two essential pieces of a successful end-to-end machine learning (ML) pipeline. These two steps often require different software and hardware setups to provide the best mix for a production environment. Model training is optimized for a low-cost, feasible total run duration, scientific flexibility, and model interpretability objectives, whereas model […]