AWS Machine Learning Blog

Category: Application Services

Automate the process to change image backgrounds using Amazon Bedrock and AWS Step Functions

Many customers, including those in creative advertising, media and entertainment, ecommerce, and fashion, often need to change the background in a large number of images. Typically, this involves manually editing each image with photo software. This can take a lot of effort, especially for large batches of images. However, Amazon Bedrock and AWS Step Functions […]

Build an internal SaaS service with cost and usage tracking for foundation models on Amazon Bedrock

In this post, we show you how to build an internal SaaS layer to access foundation models with Amazon Bedrock in a multi-tenant (team) architecture. We specifically focus on usage and cost tracking per tenant and also controls such as usage throttling per tenant. We describe how the solution and Amazon Bedrock consumption plans map to the general SaaS journey framework. The code for the solution and an AWS Cloud Development Kit (AWS CDK) template is available in the GitHub repository.

Automate PDF pre-labeling for Amazon Comprehend

Amazon Comprehend is a natural-language processing (NLP) service that provides pre-trained and custom APIs to derive insights from textual data. Amazon Comprehend customers can train custom named entity recognition (NER) models to extract entities of interest, such as location, person name, and date, that are unique to their business. To train a custom model, you […]

Getir end-to-end workforce management: Amazon Forecast and AWS Step Functions

This is a guest post co-authored by Nafi Ahmet Turgut, Mehmet İkbal Özmen, Hasan Burak Yel, Fatma Nur Dumlupınar Keşir, Mutlu Polatcan and Emre Uzel from Getir. Getir is the pioneer of ultrafast grocery delivery. The technology company has revolutionized last-mile delivery with its grocery in-minutes delivery proposition. Getir was founded in 2015 and operates […]

Implement real-time personalized recommendations using Amazon Personalize

February 9, 2024: Amazon Kinesis Data Firehose has been renamed to Amazon Data Firehose. Read the AWS What’s New post to learn more. At a basic level, Machine Learning (ML) technology learns from data to make predictions. Businesses use their data with an ML-powered personalization service to elevate their customer experience. This approach allows businesses […]

Optimize pet profiles for Purina’s Petfinder application using Amazon Rekognition Custom Labels and AWS Step Functions

Purina US, a subsidiary of Nestlé, has a long history of enabling people to more easily adopt pets through Petfinder, a digital marketplace of over 11,000 animal shelters and rescue groups across the US, Canada, and Mexico. As the leading pet adoption platform, Petfinder has helped millions of pets find their forever homes. Purina consistently […]

FL-architecture

Reinventing a cloud-native federated learning architecture on AWS

In this blog, you will learn to build a cloud-native FL architecture on AWS. By using infrastructure as code (IaC) tools on AWS, you can deploy FL architectures with ease. Also, a cloud-native architecture takes full advantage of a variety of AWS services with proven security and operational excellence, thereby simplifying the development of FL.

Dataset architecture

How United Airlines built a cost-efficient Optical Character Recognition active learning pipeline

In this post, we discuss how United Airlines, in collaboration with the Amazon Machine Learning Solutions Lab, build an active learning framework on AWS to automate the processing of passenger documents. “In order to deliver the best flying experience for our passengers and make our internal business process as efficient as possible, we have developed […]

Implement smart document search index with Amazon Textract and Amazon OpenSearch

In this post, we’ll take you on a journey to rapidly build and deploy a document search indexing solution that helps your organization to better harness and extract insights from documents. Whether you’re in Human Resources looking for specific clauses in employee contracts, or a financial analyst sifting through a mountain of invoices to extract payment data, this solution is tailored to empower you to access the information you need with unprecedented speed and accuracy.

Semantic image search for articles using Amazon Rekognition, Amazon SageMaker foundation models, and Amazon OpenSearch Service

Digital publishers are continuously looking for ways to streamline and automate their media workflows in order to generate and publish new content as rapidly as they can. Publishers can have repositories containing millions of images and in order to save money, they need to be able to reuse these images across articles. Finding the image that best matches an article in repositories of this scale can be a time-consuming, repetitive, manual task that can be automated. It also relies on the images in the repository being tagged correctly, which can also be automated (for a customer success story, refer to Aller Media Finds Success with KeyCore and AWS). In this post, we demonstrate how to use Amazon Rekognition, Amazon SageMaker JumpStart, and Amazon OpenSearch Service to solve this business problem.