AWS Machine Learning Blog

Category: Application Services

Training and serving H2O models using Amazon SageMaker

Model training and serving steps are two essential pieces of a successful end-to-end machine learning (ML) pipeline. These two steps often require different software and hardware setups to provide the best mix for a production environment. Model training is optimized for a low-cost, feasible total run duration, scientific flexibility, and model interpretability objectives, whereas model […]

Read More

Building machine learning workflows with Amazon SageMaker Processing jobs and AWS Step Functions

Machine learning (ML) workflows orchestrate and automate sequences of ML tasks, including data collection, training, testing, evaluating an ML model, and deploying the models for inference. AWS Step Functions automates and orchestrates Amazon SageMaker-related tasks in an end-to-end workflow. The AWS Step Functions Data Science Software Development Kit (SDK) is an open-source library that allows […]

Read More

Creating a machine learning-powered REST API with Amazon API Gateway mapping templates and Amazon SageMaker

Amazon SageMaker enables organizations to build, train, and deploy machine learning models. Consumer-facing organizations can use it to enrich their customers’ experiences, for example, by making personalized product recommendations, or by automatically tailoring application behavior based on customers’ observed preferences. When building such applications, one key architectural consideration is how to make the runtime inference […]

Read More

Automating model retraining and deployment using the AWS Step Functions Data Science SDK for Amazon SageMaker

As machine learning (ML) becomes a larger part of companies’ core business, there is a greater emphasis on reducing the time from model creation to deployment. In November of 2019, AWS released the AWS Step Functions Data Science SDK for Amazon SageMaker, an open-source SDK that allows developers to create Step Functions-based machine learning workflows […]

Read More

Automated and continuous deployment of Amazon SageMaker models with AWS Step Functions

Amazon SageMaker is a complete machine learning (ML) workflow service for developing, training, and deploying models, lowering the cost of building solutions, and increasing the productivity of data science teams. Amazon SageMaker comes with many predefined algorithms. You can also create your own algorithms by supplying Docker images, a training image to train your model […]

Read More

Discovering and indexing podcast episodes using Amazon Transcribe and Amazon Comprehend 

As an avid podcast listener, I had always wished for an easy way to glimpse at the transcript of an episode to decide whether I should add it to my playlist (not all episode abstracts are equally helpful!). Another challenge with podcasts is that, although they contain a wealth of knowledge that is often not […]

Read More

Get started with automated metadata extraction using the AWS Media Analysis Solution

You can easily get started extracting meaningful metadata from your media files by using the Media Analysis Solution on AWS. The Media Analysis Solution provides AWS CloudFormation templates that you can use to start extracting meaningful metadata from your media files within minutes. With a web-based user interface, you can easily upload files and see the metadata that is automatically extracted. This solution uses Amazon Rekognition for facial recognition, Amazon Transcribe to create a transcript, and Amazon Comprehend to run sentiment analysis on the transcript. You can also upload your own images to an Amazon Rekognition collection and train the solution to recognize individuals. In this blog post, we’ll show you step-by step how to launch the solution and upload an image and video. You’ll be able to see firsthand how metadata is seamlessly extracted.

Read More