AWS Machine Learning Blog

Category: Advanced (300)

solution architecture

AI/ML-driven actionable insights and themes for Amazon third-party sellers using AWS

The Amazon International Seller Growth (ISG) team runs the CSBA (Customer Service by Amazon) program that supports over 200,000 third-party Merchant Fulfilled Network (MFN) sellers. Amazon call centers facilitate hundreds of thousands of phone calls, chats, and emails going between the consumers and Amazon MFN sellers. The large volume of contacts creates a challenge for […]

Achieve rapid time-to-value business outcomes with faster ML model training using Amazon SageMaker Canvas

Machine learning (ML) can help companies make better business decisions through advanced analytics. Companies across industries apply ML to use cases such as predicting customer churn, demand forecasting, credit scoring, predicting late shipments, and improving manufacturing quality. In this blog post, we’ll look at how Amazon SageMaker Canvas delivers faster and more accurate model training times enabling […]

Virtual fashion styling with generative AI using Amazon SageMaker 

The fashion industry is a highly lucrative business, with an estimated value of $2.1 trillion by 2025, as reported by the World Bank. This field encompasses a diverse range of segments, such as the creation, manufacture, distribution, and sales of clothing, shoes, and accessories. The industry is in a constant state of change, with new […]

Simplify continuous learning of Amazon Comprehend custom models using Comprehend flywheel

Amazon Comprehend is a managed AI service that uses natural language processing (NLP) with ready-made intelligence to extract insights about the content of documents. It develops insights by recognizing the entities, key phrases, language, sentiments, and other common elements in a document. The ability to train custom models through the Custom classification and Custom entity […]

Tune ML models for additional objectives like fairness with SageMaker Automatic Model Tuning

Model tuning is the experimental process of finding the optimal parameters and configurations for a machine learning (ML) model that result in the best possible desired outcome with a validation dataset. Single objective optimization with a performance metric is the most common approach for tuning ML models. However, in addition to predictive performance, there may […]

Implementing MLOps practices with Amazon SageMaker JumpStart pre-trained models

Amazon SageMaker JumpStart is the machine learning (ML) hub of SageMaker that offers over 350 built-in algorithms, pre-trained models, and pre-built solution templates to help you get started with ML fast. JumpStart provides one-click access to a wide variety of pre-trained models for common ML tasks such as object detection, text classification, summarization, text generation […]

Building AI chatbots using Amazon Lex and Amazon Kendra for filtering query results based on user context

Amazon Kendra is an intelligent search service powered by machine learning (ML). It indexes the documents stored in a wide range of repositories and finds the most relevant document based on the keywords or natural language questions the user has searched for. In some scenarios, you need the search results to be filtered based on […]

Detect signatures on documents or images using the signatures feature in Amazon Textract

Amazon Textract is a machine learning (ML) service that automatically extracts text, handwriting, and data from any document or image. AnalyzeDocument Signatures is a feature within Amazon Textract that offers the ability to automatically detect signatures on any document. This can reduce the need for human review, custom code, or ML experience. In this post, […]

Monitoring Lake Mead drought using the new Amazon SageMaker geospatial capabilities

Earth’s changing climate poses an increased risk of drought due to global warming. Since 1880, the global temperature has increased 1.01 °C. Since 1993, sea levels have risen 102.5 millimeters. Since 2002, the land ice sheets in Antarctica have been losing mass at a rate of 151.0 billion metric tons per year. In 2022, the […]

Optimize your machine learning deployments with auto scaling on Amazon SageMaker

Machine learning (ML) has become ubiquitous. Our customers are employing ML in every aspect of their business, including the products and services they build, and for drawing insights about their customers. To build an ML-based application, you have to first build the ML model that serves your business requirement. Building ML models involves preparing the […]