Artificial Intelligence
Category: *Post Types
An innovative financial services leader finds the right AI solution: Robinhood and Amazon Nova
In this post, we share how Robinhood delivers democratized finance and real-time market insights using generative AI and Amazon Nova.
Build conversational interfaces for structured data using Amazon Bedrock Knowledge Bases
This post provides instructions to configure a structured data retrieval solution, with practical code examples and templates. It covers implementation samples and additional considerations, empowering you to quickly build and scale your conversational data interfaces.
How Apollo Tyres is unlocking machine insights using agentic AI-powered Manufacturing Reasoner
In this post, we share how Apollo Tyres used generative AI with Amazon Bedrock to harness the insights from their machine data in a natural language interaction mode to gain a comprehensive view of its manufacturing processes, enabling data-driven decision-making and optimizing operational efficiency.
Extend your Amazon Q Business with PagerDuty Advance data accessor
In this post, we demonstrate how organizations can enhance their incident management capabilities by integrating PagerDuty Advance, an innovative set of agentic and generative AI capabilities that automate response workflows and provide real-time insights into operational health, with Amazon Q Business. We show how to configure PagerDuty Advance as a data accessor for Amazon Q indexes, so you can search and access enterprise knowledge across multiple systems during incident response.
Deploy Qwen models with Amazon Bedrock Custom Model Import
You can now import custom weights for Qwen2, Qwen2_VL, and Qwen2_5_VL architectures, including models like Qwen 2, 2.5 Coder, Qwen 2.5 VL, and QwQ 32B. In this post, we cover how to deploy Qwen 2.5 models with Amazon Bedrock Custom Model Import, making them accessible to organizations looking to use state-of-the-art AI capabilities within the AWS infrastructure at an effective cost.
Build generative AI solutions with Amazon Bedrock
In this post, we show you how to build generative AI applications on Amazon Web Services (AWS) using the capabilities of Amazon Bedrock, highlighting how Amazon Bedrock can be used at each step of your generative AI journey. This guide is valuable for both experienced AI engineers and newcomers to the generative AI space, helping you use Amazon Bedrock to its fullest potential.
How Netsertive built a scalable AI assistant to extract meaningful insights from real-time data using Amazon Bedrock and Amazon Nova
In this post, we show how Netsertive introduced a generative AI-powered assistant into MLX, using Amazon Bedrock and Amazon Nova, to bring their next generation of the platform to life.
Exploring accessible audio descriptions with Amazon Nova
In this post, we demonstrate how we combined Amazon Nova, Amazon Rekognition, and Amazon Polly to automate the creation of accessible audio descriptions for video content. This approach can significantly reduce the time and cost required to make videos accessible for visually disabled audiences.
Training Llama 3.3 Swallow: A Japanese sovereign LLM on Amazon SageMaker HyperPod
The Institute of Science Tokyo has successfully trained Llama 3.3 Swallow, a 70-billion-parameter large language model (LLM) with enhanced Japanese capabilities, using Amazon SageMaker HyperPod. The model demonstrates superior performance in Japanese language tasks, outperforming GPT-4o-mini and other leading models. This technical report details the training infrastructure, optimizations, and best practices developed during the project.
Accelerating Articul8’s domain-specific model development with Amazon SageMaker HyperPod
Learn how Articul8 is redefining enterprise generative AI with domain-specific models that outperform general-purpose LLMs in real-world applications. In our latest blog post, we dive into how Amazon SageMaker HyperPod accelerated the development of Articul8’s industry-leading semiconductor model—achieving 2X higher accuracy that top open source models while slashing deployment time by 4X.









