AWS Machine Learning Blog

Mitigating risk: AWS backbone network traffic prediction using GraphStorm

In this post, we show how you can use our enterprise graph machine learning (GML) framework GraphStorm to solve prediction challenges on large-scale complex networks inspired by our practices of exploring GML to mitigate the AWS backbone network congestion risk.

Implement RAG while meeting data residency requirements using AWS hybrid and edge services

In this post, we show how to extend Amazon Bedrock Agents to hybrid and edge services such as AWS Outposts and AWS Local Zones to build distributed Retrieval Augmented Generation (RAG) applications with on-premises data for improved model outcomes. With Outposts, we also cover a reference pattern for a fully local RAG application that requires both the foundation model (FM) and data sources to reside on premises.

Unlocking complex problem-solving with multi-agent collaboration on Amazon Bedrock

The research team at AWS has worked extensively on building and evaluating the multi-agent collaboration (MAC) framework so customers can orchestrate multiple AI agents on Amazon Bedrock Agents. In this post, we explore the concept of multi-agent collaboration (MAC) and its benefits, as well as the key components of our MAC framework. We also go deeper into our evaluation methodology and present insights from our studies.

How BQA streamlines education quality reporting using Amazon Bedrock

The Education and Training Quality Authority (BQA) plays a critical role in improving the quality of education and training services in the Kingdom Bahrain. BQA reviews the performance of all education and training institutions, including schools, universities, and vocational institutes, thereby promoting the professional advancement of the nation’s human capital. In this post, we explore how BQA used the power of Amazon Bedrock, Amazon SageMaker JumpStart, and other AWS services to streamline the overall reporting workflow.

Boosting team innovation, productivity, and knowledge sharing with Amazon Q Business – Web experience

This post shows how MuleSoft introduced a generative AI-powered assistant using Amazon Q Business to enhance their internal Cloud Central dashboard. This individualized portal shows assets owned, costs and usage, and well-architected recommendations to over 100 engineers.

Build an Amazon Bedrock based digital lending solution on AWS

In this post, we propose a solution using DigitalDhan, a generative AI-based solution to automate customer onboarding and digital lending. The proposed solution uses Amazon Bedrock Agents to automate services related to KYC verification, credit and risk assessment, and notification. Financial institutions can use this solution to help automate the customer onboarding, KYC verification, credit decisioning, credit underwriting, and notification processes.

Build AI-powered malware analysis using Amazon Bedrock with Deep Instinct

In this post, we explore how Deep Instinct’s generative AI-powered malware analysis tool, DIANNA, uses Amazon Bedrock to revolutionize cybersecurity by providing rapid, in-depth analysis of known and unknown threats, enhancing the capabilities of AWS System and Organization Controls (SOC) teams and addressing key challenges in the evolving threat landscape.

Email your conversations from Amazon Q

As organizations navigate the complexities of the digital realm, generative AI has emerged as a transformative force, empowering enterprises to enhance productivity, streamline workflows, and drive innovation. To maximize the value of insights generated by generative AI, it is crucial to provide simple ways for users to preserve and share these insights using commonly used tools such as email. This post explores how you can integrate Amazon Q Business with Amazon SES to email conversations to specified email addresses.

Unlock cost-effective AI inference using Amazon Bedrock serverless capabilities with an Amazon SageMaker trained model

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies such as AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI. In this post, I’ll show you how to use Amazon Bedrock—with its fully managed, on-demand API—with your Amazon SageMaker trained or fine-tuned model.

Align and monitor your Amazon Bedrock powered insurance assistance chatbot to responsible AI principles with AWS Audit Manager

Generative AI applications should be developed with adequate controls for steering the behavior of FMs. Responsible AI considerations such as privacy, security, safety, controllability, fairness, explainability, transparency and governance help ensure that AI systems are trustworthy. In this post, we demonstrate how to use the AWS generative AI best practices framework on AWS Audit Manager to evaluate this insurance claim agent from a responsible AI lens.