AWS Machine Learning Blog
How Cato Networks uses Amazon Bedrock to transform free text search into structured GraphQL queries
Accurately converting free text inputs into structured data is crucial for applications that involve data management and user interaction. In this post, we introduce a real business use case from Cato Networks that significantly improved user experience. By using Amazon Bedrock, we gained access to state-of-the-art generative language models with built-in support for JSON schemas and structured data.
Solve forecasting challenges for the retail and CPG industry using Amazon SageMaker Canvas
In this post, we show you how Amazon Web Services (AWS) helps in solving forecasting challenges by customizing machine learning (ML) models for forecasting. We dive into Amazon SageMaker Canvas and explain how SageMaker Canvas can solve forecasting challenges for retail and consumer packaged goods (CPG) enterprises.
Enabling generative AI self-service using Amazon Lex, Amazon Bedrock, and ServiceNow
In this post, we show how you can integrate Amazon Lex with Amazon Bedrock Knowledge Bases and ServiceNow to provide 24/7 automated support and self-service options.
How Kyndryl integrated ServiceNow and Amazon Q Business
In this post, we show you how Kyndryl integrated Amazon Q Business with ServiceNow in a few simple steps. You will learn how to configure Amazon Q Business and ServiceNow, how to create a generative AI plugin for your ServiceNow incidents, and how to test and interact with ServiceNow using the Amazon Q Business web experience. This post will help you enhance your ServiceNow experience with Amazon Q Business and enjoy the benefits of a generative AI–powered interface.
HCLTech’s AWS powered AutoWise Companion: A seamless experience for informed automotive buyer decisions with data-driven design
This post introduces HCLTech’s AutoWise Companion, a transformative generative AI solution designed to enhance customers’ vehicle purchasing journey. In this post, we analyze the current industry challenges and guide readers through the AutoWise Companion solution functional flow and architecture design using built-in AWS services and open source tools. Additionally, we discuss the design from security and responsible AI perspectives, demonstrating how you can apply this solution to a wider range of industry scenarios.
Mitigating risk: AWS backbone network traffic prediction using GraphStorm
In this post, we show how you can use our enterprise graph machine learning (GML) framework GraphStorm to solve prediction challenges on large-scale complex networks inspired by our practices of exploring GML to mitigate the AWS backbone network congestion risk.
Implement RAG while meeting data residency requirements using AWS hybrid and edge services
In this post, we show how to extend Amazon Bedrock Agents to hybrid and edge services such as AWS Outposts and AWS Local Zones to build distributed Retrieval Augmented Generation (RAG) applications with on-premises data for improved model outcomes. With Outposts, we also cover a reference pattern for a fully local RAG application that requires both the foundation model (FM) and data sources to reside on premises.
Unlocking complex problem-solving with multi-agent collaboration on Amazon Bedrock
The research team at AWS has worked extensively on building and evaluating the multi-agent collaboration (MAC) framework so customers can orchestrate multiple AI agents on Amazon Bedrock Agents. In this post, we explore the concept of multi-agent collaboration (MAC) and its benefits, as well as the key components of our MAC framework. We also go deeper into our evaluation methodology and present insights from our studies.
How BQA streamlines education quality reporting using Amazon Bedrock
The Education and Training Quality Authority (BQA) plays a critical role in improving the quality of education and training services in the Kingdom Bahrain. BQA reviews the performance of all education and training institutions, including schools, universities, and vocational institutes, thereby promoting the professional advancement of the nation’s human capital. In this post, we explore how BQA used the power of Amazon Bedrock, Amazon SageMaker JumpStart, and other AWS services to streamline the overall reporting workflow.
Boosting team innovation, productivity, and knowledge sharing with Amazon Q Business – Web experience
This post shows how MuleSoft introduced a generative AI-powered assistant using Amazon Q Business to enhance their internal Cloud Central dashboard. This individualized portal shows assets owned, costs and usage, and well-architected recommendations to over 100 engineers.