Artificial Intelligence
Cohere Embed 4 multimodal embeddings model is now available on Amazon SageMaker JumpStart
The Cohere Embed 4 multimodal embeddings model is now generally available on Amazon SageMaker JumpStart. The Embed 4 model is built for multimodal business documents, has leading multilingual capabilities, and offers notable improvement over Embed 3 across key benchmarks. In this post, we discuss the benefits and capabilities of this new model. We also walk you through how to deploy and use the Embed 4 model using SageMaker JumpStart.
How INRIX accelerates transportation planning with Amazon Bedrock
INRIX pioneered the use of GPS data from connected vehicles for transportation intelligence. In this post, we partnered with Amazon Web Services (AWS) customer INRIX to demonstrate how Amazon Bedrock can be used to determine the best countermeasures for specific city locations using rich transportation data and how such countermeasures can be automatically visualized in street view images. This approach allows for significant planning acceleration compared to traditional approaches using conceptual drawings.
Qwen3 family of reasoning models now available in Amazon Bedrock Marketplace and Amazon SageMaker JumpStart
Today, we are excited to announce that Qwen3, the latest generation of large language models (LLMs) in the Qwen family, is available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can deploy the Qwen3 models—available in 0.6B, 4B, 8B, and 32B parameter sizes—to build, experiment, and responsibly scale your generative AI applications on AWS. In this post, we demonstrate how to get started with Qwen3 on Amazon Bedrock Marketplace and SageMaker JumpStart.
Build a just-in-time knowledge base with Amazon Bedrock
Traditional Retrieval Augmented Generation (RAG) systems consume valuable resources by ingesting and maintaining embeddings for documents that might never be queried, resulting in unnecessary storage costs and reduced system efficiency. This post presents a just-in-time knowledge base solution that reduces unused consumption through intelligent document processing. The solution processes documents only when needed and automatically removes unused resources, so organizations can scale their document repositories without proportionally increasing infrastructure costs.
Agents as escalators: Real-time AI video monitoring with Amazon Bedrock Agents and video streams
In this post, we show how to build a fully deployable solution that processes video streams using OpenCV, Amazon Bedrock for contextual scene understanding and automated responses through Amazon Bedrock Agents. This solution extends the capabilities demonstrated in Automate chatbot for document and data retrieval using Amazon Bedrock Agents and Knowledge Bases, which discussed using Amazon Bedrock Agents for document and data retrieval. In this post, we apply Amazon Bedrock Agents to real-time video analysis and event monitoring.
Transforming network operations with AI: How Swisscom built a network assistant using Amazon Bedrock
In this post, we explore how Swisscom developed their Network Assistant. We discuss the initial challenges and how they implemented a solution that delivers measurable benefits. We examine the technical architecture, discuss key learnings, and look at future enhancements that can further transform network operations.
End-to-End model training and deployment with Amazon SageMaker Unified Studio
In this post, we guide you through the stages of customizing large language models (LLMs) with SageMaker Unified Studio and SageMaker AI, covering the end-to-end process starting from data discovery to fine-tuning FMs with SageMaker AI distributed training, tracking metrics using MLflow, and then deploying models using SageMaker AI inference for real-time inference. We also discuss best practices to choose the right instance size and share some debugging best practices while working with JupyterLab notebooks in SageMaker Unified Studio.
Optimize RAG in production environments using Amazon SageMaker JumpStart and Amazon OpenSearch Service
In this post, we show how to use Amazon OpenSearch Service as a vector store to build an efficient RAG application.
Advancing AI agent governance with Boomi and AWS: A unified approach to observability and compliance
In this post, we share how Boomi partnered with AWS to help enterprises accelerate and scale AI adoption with confidence using Agent Control Tower.
Use Amazon SageMaker Unified Studio to build complex AI workflows using Amazon Bedrock Flows
In this post, we demonstrate how you can use SageMaker Unified Studio to create complex AI workflows using Amazon Bedrock Flows.