AWS menghadirkan AI generatif di FORMULA 1 AWS GRAND PRIX DU CANADA 2024
Amazon Web Services (AWS) meluncurkan trofi pertama yang terinspirasi oleh AI generatif di FORMULA 1 AWS GRAND PRIX DU CANADA. Dengan Amazon Bedrock, AWS membuat ratusan konsep untuk trofi tersebut. Cari tahu cara tim bereksperimen dan merancang trofi yang lain daripada yang lain untuk FORMULA 1 AWS GRAND PRIX DU CANADA 2024.
Era baru berpacu dengan AI generatif
AWS mendorong inovasi untuk Formula 1. Dengan machine learning dan AI yang menganalisis lebih dari 1,1 juta titik data per detik untuk menghasilkan wawasan F1, teknologi ini membawa jutaan penggemar lebih dekat ke aksi balap dari kursi mereka.
Wawasan F1 didukung oleh AWS | Strategi Alternatif
Strategi Alternatif, Wawasan F1 yang didukung oleh AWS, adalah grafik baru yang akan memberi penggemar dan penyiar pandangan alternatif tentang bagaimana keputusan pembalap dan tim mereka memengaruhi balapan: dengan menganalisis bagaimana balapan mereka akan berjalan dengan baik jika mereka membuat keputusan strategi yang berbeda. Setiap keputusan penting dan informasi apa pun dapat berkontribusi pada tim untuk mengambil keputusan yang tepat pada momen penting tersebut.
Wawasan F1 - Sistem Energi Hibrid
Sistem Energi Hibrida, sebuah F1 Insight yang didukung oleh AWS, dapat mengidentifikasi cara pengemudi menggunakan energi listrik secara optimal. Grafik akan mengidentifikasi tiga perilaku pengemudi (netral, pengisian ulang, dan deployment) berdasarkan energi yang digunakan pada putaran sebelumnya. Ini semua dapat dicapai dengan menyelesaikan persamaan keseimbangan energi menggunakan daya komputasi AWS Cloud. Insight membantu para penonton memahami keputusan strategis penting yang terjadi di dalam kokpit
Cara Formula 1 menggunakan operasi dan produksi jarak jauh
Formula 1 mendorong inovasi dan mencari cara baru yang lebih efisien untuk menjalankan operasi mereka. Ryan Kirk, Cloud Architect dan Cloud & DevOps Team Manager di Formula 1, berbagi tentang bagaimana timnya ingin memanfaatkan teknologi cloud guna meningkatkan operasi, sistem, dan alur kerja yang ada, atau menemukan cara baru untuk mewujudkan operasi.
Bagaimana Formula 1 memulai transformasi cloud mereka dengan AWS
Neil Ralph, AWS Principal Sports Partnership Manager merefleksikan lima tahun bekerja dengan Formula 1 dalam percakapan dengan Chris Roberts, F1 Director of IT, yang memelopori perjalanan transformasi cloud organisasi.
AWS mendukung
F1 Insight: Close to the Wall
Close to the Wall memberi penggemar dan penyiar pandangan unik tentang seberapa dekat mobil F1 dengan dinding di beberapa tikungan yang paling menarik Kejuaraan ini. F1 menghitung jarak bagian mobil F1 (biasanya ban) yang terdekat dengan dinding menggunakan kamera khusus serta perpaduan jaringan neural dengan algoritma penglihatan komputer. Hal ini dilakukan dengan menggunakan empat langkah proses akuisisi bingkai, deteksi gerakan mobil, estimasi lintasan, dan hasil algoritma.
MENGAPA F1 MEMILIH AWS
Kami memerlukan penyedia teknologi yang akan membantu kami berinovasi lebih cepat dan mendorong organisasi kami ke masa depan, dan AWS adalah pilihan yang jelas untuk dijadikan partner. Dengan memanfaatkan keluasan dan kedalaman AWS serta teknologi cloud inovatifnya, kami dapat membawa penggemar lebih dekat dengan keputusan sepersekian detik di lintasan, mendesain ulang mobil F1 masa depan kami, membantu kami lebih memahami kekayaan data F1, serta menjalankan analitik dan machine learning untuk memanfaatkan data tersebut, dan banyak lagi. Kami senang dengan apa yang telah kami capai dan senang melihat apa lagi yang bisa dilakukan bersama-sama.
- Ross Brawn, Direktur Pengelola Olahraga Mesin (Managing Director of Motor Sports), F1
Kami memerlukan penyedia teknologi yang akan membantu kami berinovasi lebih cepat dan mendorong organisasi kami ke masa depan, dan AWS adalah pilihan yang jelas untuk dijadikan partner. Dengan memanfaatkan keluasan dan kedalaman AWS serta teknologi cloud inovatifnya, kami dapat membawa penggemar lebih dekat dengan keputusan sepersekian detik di lintasan, mendesain ulang mobil F1 masa depan kami, membantu kami lebih memahami kekayaan data F1, serta menjalankan analitik dan machine learning untuk memanfaatkan data tersebut, dan banyak lagi. Kami senang dengan apa yang telah kami capai dan senang melihat apa lagi yang bisa dilakukan bersama-sama.
- Ross Brawn, Direktur Pengelola Olahraga Mesin (Managing Director of Motor Sports), F1
Dengan driver mencapai kecepatan setinggi 230 mph, mengambil pit stop dalam waktu kurang dari dua detik, dan terbang di tikungan dengan kekuatan 5G, FORMULA 1 (F1) membutuhkan penyedia teknologi secepat olahraga mereka. F1 adalah pertarungan antara driver terbaik dunia, tetapi juga pertarungan beberapa rekayasawan paling inovatif di dunia. Dengan menggunakan AWS, F1 menggunakan teknologi inovatif, seperti model machine learning (ML) dan komputasi performa tinggi (HPC), untuk mentransformasi olahraga secara digital.
Inilah cara kerjanya:
Mengubah Olahraga
Fungsionalitas AWS yang terluas dan terdalam serta kecepatan inovasi yang tak tertandingi mengubah cara F1 mengumpulkan, menganalisis, dan memanfaatkan data dan konten untuk membuat keputusan. Dengan 300 sensor pada setiap mobil balap F1 yang menghasilkan lebih dari 1,1 juta titik data per detik yang ditransmisikan dari mobil ke pit, F1 benar-benar olahraga yang didorong data.
Meningkatkan Aksi
di Lintasan
F1 dan AWS menggunakan data untuk meningkatkan performa kendaraan dan driver. Dengan menggunakan komputasi performa tinggi AWS, F1 mampu menjalankan simulasi aerodinamis untuk mengembangkan mobil generasi berikutnya 70% lebih cepat dari sebelumnya, menciptakan mobil yang mengurangi kehilangan gaya turun dari 50% menjadi 15%. Pengurangan yang dramatis ini menawarkan driver yang mengejar peluang menyalip yang lebih tinggi dan dengan demikian menawarkan lebih banyak aksi wheel-to-wheel untuk para penggemar. Mobil generasi berikutnya ini akan diperkenalkan pada musim 2022. F1 juga mengeksplorasi penggunaan machine learning dalam proses simulasinya, memberi organisasi wawasan baru dan lebih dari 550 juta titik data yang dikumpulkan melalui lebih dari 5.000 simulasi tunggal dan banyak mobil.
Penggemar yang menarik dan
menyenangkan
Pengalaman penggemar berubah selama akhir pekan balapan. Dengan AWS, F1 telah mampu mengubah jutaan titik data yang ditransmisikan dari mobil dan pinggir lintasan menjadi pengalaman penggemar yang menarik melalui F1 Insights-nya. F1 menggunakan 70 tahun data balapan historis yang disimpan di Amazon S3, dianalisis dengan model kompleks dan dibagikan kepada penggemar sebagai wawasan data kaya yang mengungkapkan nuansa pengambilan keputusan sepersekian detik, dan menyoroti performa melalui statistik lanjutan ini.
AI GENERATIF UNTUK OLAHRAGA
AI generatif membantu merombak industri olahraga dengan meningkatkan efisiensi dan mendorong keterlibatan penggemar. Simak peran AWS dalam membantu berbagai liga, tim, dan media & hiburan dengan teknologi mutakhir ini.
MELIBATKAN PARA PENGGEMAR
F1 Insights yang didukung oleh AWS mengubah pengalaman penggemar sebelum, selama, dan setelah setiap balapan. Dengan menggunakan poin data yang berbeda untuk menginformasikan setiap wawasan, F1 memungkinkan penggemar untuk memahami bagaimana driver membuat keputusan cepat dan bagaimana tim merancang dan menerapkan strategi balapan secara langsung yang berdampak pada hasil balapan. Berikut adalah beberapa contoh tentang bagaimana semuanya dilakukan bersama-sama.
Klik di bawah ini untuk memperluas
Dengan menggunakan data waktu, F1 mampu menciptakan wawasan visual yang memungkinkan penggemar menganalisis secara objektif performa tim dan driver, strategi dan taktik yang akan berdampak pada hasil balapan secara keseluruhan.
-
Prakiraan Pertandingan
Menggunakan riwayat lintasan dan kecepatan driver yang diproyeksikan, Prakiraan Pertandingan akan memprediksi berapa lap sebelum mobil yang mengejar berada dalam 'jarak serangan' dari mobil di depan.
-
Pertandingan Strategi Pit
Grafik Pertandingan Strategi Pit memberikan wawasan tambahan kepada penggemar tentang cara menilai seberapa sukses setiap strategi driver secara langsung. Fans akan dapat melacak perubahan strategi yang halus dan melihat dampaknya pada hasil akhir.
-
Jendela Pit
Perkiraan jendela pit stop berdasarkan kompon ban, waktu putaran, dan penyebaran mobil. Pemirsa akan melihat bagaimana balapan dapat diubah berdasarkan dinamika balapan, termasuk strategi balap tim lain, mobil keselamatan, dan bendera kuning.
-
Strategi Pit Stop yang Diprediksi
Data historis digunakan untuk menghitung strategi balapan selama putaran formasi, membandingkan prediksi ban dan strategi balapan. Wawasan ini mengizinkan pemirsa untuk melihat kapan seorang driver harus secara strategis melakukan pit stop berikutnya.
-
Undercut Threat
‘Undercut’ yang sukses dapat membuat Anda memenangkan balapan atau memperoleh posisi vital. Tidak diragukan lagi ini adalah salah satu momen paling menegangkan yang harus dihadapi tim teknis selama balapan. Grafik ini akan membawa penggemar lebih dekat ke dunia ahli strategi F1 di mana keputusan sepersekian detik ini dapat memenangkan atau kehilangan poin kejuaraan yang vital.
-
Strategi Alternatif
Strategi Alternatif, Wawasan F1 yang didukung oleh AWS, adalah grafik baru yang akan memberi penggemar dan penyiar pandangan alternatif tentang bagaimana keputusan pembalap dan tim mereka memengaruhi balapan: dengan menganalisis bagaimana balapan mereka akan berjalan dengan baik jika mereka membuat keputusan strategi yang berbeda. Setiap keputusan penting dan informasi apa pun dapat berkontribusi pada tim untuk mengambil keputusan yang tepat pada momen penting tersebut.
Analisis data memungkinkan F1 membandingkan performa mobil, tim, dan pembalap tertentu di semua parameter yang relevan dan memberi peringkat secara visual untuk mendidik penggemar.
-
Analisis Mobil/Perkembangan Mobil
Wawasan ini menunjukkan bagaimana tim mengembangkan mobil mereka, seberapa cepat mereka mengembangkan mobil mereka, dan apa hasil di lintasan sepanjang musim. Perlombaan pengembangan baik selama musim dan dari tahun ke tahun adalah KPI utama untuk tim F1, dan ini memberikan wawasan unik tentang cara kerja F1 dan bagaimana performa tim satu sama lain di area ini.
-
Close to the Wall
Close to the Wall memberi penggemar dan penyiar pandangan unik tentang seberapa dekat mobil F1 dengan dinding di beberapa tikungan yang paling menarik Kejuaraan ini. F1 menghitung jarak bagian mobil F1 (biasanya ban) yang terdekat dengan dinding menggunakan kamera khusus serta perpaduan jaringan neural dengan algoritma penglihatan komputer. Hal ini dilakukan dengan menggunakan empat langkah proses akuisisi bingkai, deteksi gerakan mobil, estimasi lintasan, dan hasil algoritma.
-
Skor Performa Mobil
Wawasan ini mengisolasi performa mobil individu dan memungkinkan penggemar untuk membandingkan performanya dengan kendaraan yang berbeda, dengan secara langsung membandingkan blok bangunan yang membentuk performa mobil–yaitu performa di tikungan, performa trek lurus, dan keseimbangan atau pengendalian mobil.
-
Performa Driver
Performa Driver menyoroti driver mana yang mendorong mobil mereka ke batas performa absolut dibandingkan dengan rekan satu tim dan pesaing mereka. Dengan menghitung gaya yang dihasilkan oleh ban mobil selama satu putaran, dan membandingkannya dengan kemampuan maksimum mobil, ini akan menunjukkan seberapa besar potensi performa mobil yang diekstrak oleh driver. Tiga parameter akan ditampilkan untuk menyoroti tiga bidang utama performa driver yang memiliki pengaruh besar pada tujuan akhir - waktu putaran: Akselerasi, Pengereman, Tikungan.
-
Performa Musiman Driver
Ini memberikan perincian performa driver berdasarkan bagian terpenting dari keterampilan mengemudi dengan menganalisis banyak data di seluruh efek mobil, ban, lalu lintas, bahan bakar, dan lainnya ke output skor dari performa setiap driver sepanjang musim terhadap tujuh kunci metrik – Kecepatan Kualifikasi, Permulaan Balapan, Lap Balap 1, Kecepatan Balap, Manajemen Ban, Keterampilan Pit Stop Driver, dan Menyalip. Metrik ini dinormalisasi menggunakan rentang 0-10 untuk memberikan metrik gaya 'skor', dan memberikan wawasan bagi pemirsa, penggemar, dan tim tentang di mana letak kekuatan dan kelemahan driver tertentu dan bagaimana mereka dibandingkan dengan yang lain di lintasan.
-
Performa Pit Lane
Pit Lane Performance akan memberikan peluang kepada para penggemar dan penyiar untuk memahami seluruh acara di pit stop, memahami waktu yang dialami oleh pengemudi saat masuk ke dan keluar dari jalur pit.
-
Kecepatan Kualifikasi
Secara historis merupakan sesi subjektif, F1 Insight yang didukung oleh AWS ini akan menggunakan machine learning dan metodologi analitik, mengambil data latihan dan menggunakan data historis tentang bagaimana kemajuan tim antara balapan hari Sabtu dan Minggu.
-
Start Analysis
Memberi penggemar pandangan mendetail tentang bagaimana setiap pengemudi dapat mengeksploitasi performa (atau tidak!) di fase start atau peluncuran.
F1 melihat secara dekat aerodinamika, performa ban, unit daya, dinamika kendaraan, dan pengoptimalan kendaraan untuk menawarkan wawasan yang membantu penggemar menafsirkan performa mobil secara keseluruhan.
-
Performa Pengereman
Performa Pengereman menunjukkan bagaimana gaya pengereman driver saat melakukan manuver menikung dapat memberikan keuntungan saat menikung. Performa Pengereman membandingkan gaya pengereman dan performa driver dengan mengukur seberapa dekat mereka mendekati puncak tikungan sebelum pengereman dan akan menunjukkan bagaimana mobil dan driver bekerja bersama saat menikung, seperti kecepatan tertinggi saat mendekat, penurunan kecepatan melalui pengereman, daya pengereman yang digunakan, dan yang driver G-forces sangat besar alami saat menikung.
-
Analisis Tikungan
Satu-satunya area terpenting untuk performa mobil F1 dan ini menawarkan wawasan yang bagus tentang bagaimana mobil bagus dibandingkan dengan mobil hebat. Ini memecah tikungan menjadi 4 bagian utama – pengereman, belok, tikungan tengah, dan keluar – menganalisis dan membandingkan performa melalui bagian utama tikungan melalui data telemetri mobil.
-
Kecepatan Keluar
Analisis menikung yang ditentukan oleh pengereman optimal dan titik akselerasi di sekitar tikungan tertentu (dan penting), yang merupakan area di mana setiap driver memiliki keuntungan paling banyak. Wawasan ini memberi pemirsa pemahaman terperinci tentang kerugian dan keuntungan pada waktu putaran dan memungkinkan perbandingan antar mobil.
-
Performa Ban
Dengan menggunakan data mobil, yaitu kecepatan mobil, percepatan longitudinal dan lateral, dan Gyro, kita dapat membuat estimasi sudut slip lalu menurunkan model keseimbangan kendaraan untuk setiap mobil. Ini memberikan output energi keausan ban. (Catatan: energi keausan ban bukanlah keausan fisik ban, melainkan transfer energi dari bidang kontak ban yang meluncur melintasi permukaan jalan.) Output-nya memberi kami performa ban untuk setiap sudut, yang menunjukkan seberapa banyak ban telah digunakan sehubungan dengan masa pakai performa tertingginya.
-
Perbandingan Lap AWS
Grafik Perbandingan Lap melakukan kontekstualisasi tingkat performa dari mobil F1 bagi penggemar dan penyiar dengan membandingkan waktu lap dengan Mobil Keselamatan dan mobil balap ‘biasa’. Tujuan dan hasil dari grafik ini, akan digunakan untuk mendemonstrasikan melalui model data, betapa superiornya teknologi F1 dibandingkan dengan teknologi dan performa yang lebih akrab dengan penonton.
-
Waktu Prediksi Penyisihan
Waktu Prediksi Penyisihan memberi penggemar dan komentator wawasan ‘tingkat tim’ pada waktu yang ditargetkan setiap pembalap untuk masuk ke sesi kualifikasi selanjutnya. Digunakan pada tingkat setiap sesi selanjutnya, waktu target di grafik ini akan memberikan target yang menarik bagi penggemar untuk memetakan waktu setiap pembalap saat mereka melewati garis pada putaran mereka - pada akhirnya mendekatkan penggemar pada drama dari hasil akhir.
-
Dominasi Lintasan
Grafik Dominasi Lintasan memberi penggemar dan komentator wawasan tentang di mana pembalap mendominasi rivalnya di sirkuit sembari kita menonton latihan dan sesi kualifikasi dimainkan secara real time. Selain itu, perbandingan telemetri pascasesi memberikan analisis yang lebih mendalam kepada para penggemar tentang pembalap mana yang melaju paling cepat di tikungan dan mana yang paling cepat di lintasan lurus. Selain itu, perbandingan juga akan memberi para penggemar lebih banyak wawasan tentang pembalap dan performa mobil serta taktik pada hari dilaksanakannya balapan.
-
Sistem Energi Hibrida
Sistem Energi Hibrida, sebuah F1 Insight yang didukung oleh AWS, dapat mengidentifikasi cara pengemudi menggunakan energi listrik secara optimal. Grafik akan mengidentifikasi tiga perilaku pengemudi (netral, pengisian ulang, dan deployment) berdasarkan energi yang digunakan pada putaran sebelumnya. Ini semua dapat dicapai dengan menyelesaikan persamaan keseimbangan energi menggunakan daya komputasi AWS Cloud. Insight membantu para penonton memahami keputusan strategis penting yang terjadi di dalam kokpit.
Driver Tercepat
Dengan menggunakan teknologi machine learning AWS, wawasan ini memberikan peringkat objektif dan didorong data dari semua driver F1 dari tahun 1983 hingga saat ini, dengan menghapus diferensial mobil F1 dari persamaan untuk menjawab pertanyaan yang telah lama diajukan: Siapakah pembalap tercepat? Ilmuwan data dari F1 dan Lab Solusi Amazon Machine Learning (ML) untuk pertama kalinya dalam sejarah menciptakan peringkat kecepatan driver lintas era, objektif, kompleks, dan didorong data.
DIMULAI DENGAN DATA
Setiap mobil F1 berisi 300 sensor yang menghasilkan 1,1 juta titik data telemetri per detik yang ditransmisikan dari mobil ke pit. Data secara langsung ini digabungkan dengan lebih dari 70 tahun data balapan historis yang disimpan di Amazon S3 untuk mengekstrak wawasan kaya yang menginformasikan, mendidik, dan memperkaya pengalaman penggemar serta menghadirkan lebih banyak wawasan tentang pilihan strategi balapan yang menciptakan performa unggul di lintasan.
ALIHKAN PENGGEMAR KE PERLENGKAPAN
Dengan mengambil data historis dan menggunakannya untuk mengajarkan algoritma machine learning kompleks Amazon SageMaker, F1 dapat memprediksi hasil strategi balapan dengan akurasi yang meningkat untuk tim, mobil, dan driver. Model-model ini kemudian dapat memprediksi skenario masa depan menggunakan data waktu nyata yang diperbarui saat balapan GRAND PRIX dibuka untuk menghadirkan pengalaman penggemar yang kaya dan menarik.
MACHINE LEARNING DENGAN DATA F1
BLOG
Bagaimana Formula 1 memulai transformasi cloud mereka dengan AWS
Neil Ralph, AWS Principal Sports Partnership Manager merefleksikan lima tahun bekerja dengan Formula 1 dalam percakapan dengan Chris Roberts, F1 Director of IT, yang memelopori perjalanan transformasi cloud organisasi.
Pelajari Selengkapnya Mengenai Ancaman Undercut dari Para Ahli
Rob Smedley, Chief Technical Engineer - Salah satu bagian yang paling menarik dari balapan F1 Grand Prix adalah ketika dua tim terkunci dalam pertempuran, saling berebut dan hampir memasuki jendela pit stop (waktu balapan saat diprediksi untuk membuat pit stop untuk penggantian ban). Ketika mobil melaju dalam jarak dekat, sering terjadi siapa yang berkedip lebih dulu dan seperti yang telah kita lihat dalam banyak kesempatan, yang berani seringkali bisa mengalahkan lawan yang kurang tegas.
Pelajari Selengkapnya Tentang Performa Pit Lane dari para Ahli
Rob Smedley, Kepala Rekayasawan Teknis (Chief Technical Engineer) - Rekayasa dan Analisis Performa F1, memerinci pentingnya nilai Pitlane Performance F1 Insight yang baru. Pitstop telah menjadi salah satu aspek yang paling menarik dari Formula 1. Pitstop menjadi jendela tampilan di mana F1 bisa menghadirkan perpaduan sempurna antara performa manusia dan teknologi. Bisa mengganti keempat ban dalam jangka waktu kurang dari dua detik merupakan pencapaian yang luar biasa dan menunjukkan betapa kerasnya upaya setiap tim F1 dalam menemukan kesempurnaan. Dengan grafik baru ini, kami bertujuan, seperti biasa, untuk menampilkan keseluruhan acara pit stop yang akan membantu kita memahami waktu sejak pengemudi masuk ke dalam jalur pit.
Pelajari Selengkapnya Tentang Balapan Terbaik Dimulai dari Ahlinya
Rob Smedley, Kepala Rekayasawan (Chief Engineer) dan Direktur Sistem Data F1. Start, atau peluncuran seperti yang dikenal dalam F1, benar-benar tepi kursi untuk penggemar, pengemudi, dan para rekayasawan. Hal itu adalah salah satu bagian paling menarik dari balapan Grand Prix, namun semuanya berakhir dan selesai dalam hitungan detik. Mengingat pentingnya beberapa detik awal balapan Grand Prix ini, tim berusaha keras untuk setiap detail. Ada sejumlah tindakan tepat dan bersamaan yang perlu dilakukan oleh pengemudi selaras dengan sistem kontrol kendaraan dan unit daya untuk mencapai start penghabisan yang dapat membuat semua perbedaan di akhir balapan.
Pelajari Selengkapnya Tentang Performa Driver
dari Ahlinya
Rob Smedley, Kepala Rekayasawan Teknis (Chief Technical Engineer) - Rekayasa dan Analisis Kinerja F1, memerinci F1 Insight terbaru yang didukung oleh AWS. Performa Driver menyoroti driver mana yang mendorong mobil mereka ke batas performa absolut dibandingkan dengan rekan satu tim dan pesaing mereka.
Pelajari Selengkapnya Tentang Performa Pengereman
dari Ahlinya
Rob Smedley, Kepala Rekayasawan Teknis (Chief Technical Engineer) - Rekayasa dan Analisis Kinerja F1, memerinci F1 Insight terbaru yang didukung oleh AWS. Performa Pengereman menunjukkan bagaimana mobil dan driver bekerja bersama saat menikung, seperti kecepatan tertinggi saat mendekat, penurunan kecepatan melalui pengereman, daya pengereman yang digunakan, dan gaya G-force yang dialami driver saat menikung.
Pelajari Selengkapnya Tentang Performa Musiman Driver dari Ahlinya
Rob Smedley, Kepala Rekayasawan Teknis (Chief Technical Engineer) - Rekayasa dan Analisis Performa F1, memerinci F1 Insight baru. Performa Musiman Driver memberikan perincian performa driver berdasarkan kumpulan bagian terpenting dari keterampilan mengemudi. Wawasan ini menganalisis banyak data untuk memberikan hasil performa musiman driver di tujuh metrik utama.
Pelajari Selengkapnya Tentang Kecepatan Kualifikasi
dari Ahlinya
Rob Smedley, Kepala Rekayasawan Teknis (Chief Technical Engineer) - Rekayasa dan Analisis Performa F1, memerinci F1 Insight baru. Kecepatan Kualifikasi membantu memberikan wawasan tentang kecepatan dan performa yang diharapkan dari tim selama Kualifikasi, melalui analisis performa mereka selama sesi latihan akhir pekan. Wawasan baru ini menggunakan machine learning dan metodologi analitik, mengambil data latihan dan menggunakan data historis tentang bagaimana kemajuan waktu antara balapan hari Sabtu dan Minggu, untuk mencoba memberikan jawaban seperti apa hasil kualifikasi nantinya.
Pelajari Selengkapnya Tentang Analisis Mobil/
Pengembangan Mobil dari Ahlinya
Rob Smedley, Kepala Rekayasawan Teknis (Chief Technical Engineer) - Rekayasa dan Analisis Performa F1, memerinci pentingnya F1 Insight baru. Berfokus pada tiga elemen inti pengembangan mobil F1, grafik tersebut akan mengukur perkembangan performa di Aerodynamic Drag, Aerodynamic Downforce, dan Engine Power, yang dibangun berdasarkan analisis waktu putaran dan menggunakan data telemetri sebagai sumber input utama.
Pelajari Selengkapnya Tentang Analisis Tikungan
dari Ahlinya
Rob Smedley, Kepala Rekayasawan Teknis (Chief Technical Engineer) - Rekayasa dan Analisis Performa F1, memerinci pentingnya Analisis Tikungan F1 Insight baru. Ini memberikan wawasan tentang detail mengapa beberapa mobil berperforma lebih baik daripada yang lain melalui tikungan kecepatan tinggi dan rendah – satu-satunya area terpenting untuk performa mobil F1 – dengan menganalisis dan membandingkan performa melalui bagian utama tikungan melalui telemetri mobil data.
Pelajari Selengkapnya Tentang Performa Mobil
Skor dari Ahlinya
Rob Smedley, Kepala Rekayasawan Teknis (Chief Technical Engineer) - Rekayasa dan Analisis Performa F1, memerinci pentingnya Skor Performa Mobil F1 Insight baru. Aspek penting dari performa mobil Formula 1 ini memberikan pemahaman yang lebih jelas kepada penggemar sejak awal tentang bagaimana performa mobil yang berbeda satu sama lain.
MEMPERCEPAT PENGALAMAN PENGGEMAR
Ingin membuka di balik kap mesin dan melihat bagaimana hal itu dilakukan? Pelajari bagaimana AWS dan F1 menggunakan algoritma machine learning yang dibuat dengan Amazon SageMaker yang memberikan wawasan baru dan meningkatkan aksi di lintasan, dan bagaimana F1 menggunakan AWS untuk merancang mobil balap berikutnya.
PRODUK YANG MENDUKUNG
F1 INSIGHTS
Memulai dengan Layanan Profesional
F1 telah berinovasi dengan tim Layanan Profesional dan Tim Amazon ML Solutions Lab untuk mempercepat pengembangan F1 Insights dengan membuat prototipe kasus penggunaan dan mengembangkan bukti konsep baru. Tim ProServ kemudian membantu F1 memasukkan model ke dalam produksi dan diintegrasikan ke dalam infrastruktur F1.