AWS Big Data Blog

Build and run streaming applications with Apache Flink and Amazon Kinesis Data Analytics for Java Applications

In this post, we discuss how you can use Apache Flink and Amazon Kinesis Data Analytics for Java Applications to address these challenges. We explore how to build a reliable, scalable, and highly available streaming architecture based on managed services that substantially reduce the operational overhead compared to a self-managed environment.

Improve clinical trial outcomes by using AWS technologies

We are living in a golden age of innovation, where personalized medicine is making it possible to cure diseases that we never thought curable. Digital medicine is helping people with diseases get healthier, and we are constantly discovering how to use the body’s immune system to target and eradicate cancer cells. According to a report […]

Federate Amazon Redshift access with Okta as an identity provider

December 2022: This post was reviewed and updated for accuracy. Managing database users and access can be a daunting and error-prone task. In the past, database administrators had to determine which groups a user belongs to and which objects a user/group is authorized to use. These lists were maintained within the database and could easily […]

Build a modern analytics stack optimized for sharing and collaborating with Mode and Amazon Redshift

Leading technology companies, such as Netflix and Airbnb, are building on AWS to solve problems on the edge of the data ecosystem. While these companies show us what data and analytics make possible, the complexity and scale of their problems aren’t typical. Most of our challenges aren’t figuring out how to process billions of records […]

Amazon QuickSight Announces General Availability of ML Insights

At re:Invent 2018, we announced the preview of ML Insights, a set of out-of-the-box machine learning and natural language features that provide Amazon QuickSight users with business insights beyond visualization. Today, we are announcing the general availability of ML Insights. As the volume of data that customers generate continues to grow every day, it’s becoming […]

Best practices for running Apache Spark applications using Amazon EC2 Spot Instances with Amazon EMR

In this blog post, we are going to focus on cost-optimizing and efficiently running Spark applications on Amazon EMR by using Spot Instances. We recommend several best practices to increase the fault tolerance of your Spark applications and use Spot Instances. These work without compromising availability or having a large impact on performance or the length of your jobs.

How to enable cross-account Amazon Redshift COPY and Redshift Spectrum query for AWS KMS–encrypted data in Amazon S3

This post shows a step-by-step walkthrough of how to set up a cross-account Amazon Redshift COPY and Spectrum query using a sample dataset in Amazon S3. The sample dataset is encrypted at rest using AWS KMS-managed keys (SSE-KMS). About AWS Key Management Service (AWS KMS) With AWS Key Management Service (AWS KMS), you can have […]

Improve Apache Spark write performance on Apache Parquet formats with the EMRFS S3-optimized committer

November 2024: This post was reviewed and updated for accuracy. The EMRFS S3-optimized committer is a new output committer available for use with Apache Spark jobs as of Amazon EMR 5.19.0. This committer improves performance when writing Apache Parquet files to Amazon S3 using the EMR File System (EMRFS). In this post, we run a performance […]