Artificial Intelligence
Category: Amazon Machine Learning
Monitor Amazon Bedrock batch inference using Amazon CloudWatch metrics
In this post, we explore how to monitor and manage Amazon Bedrock batch inference jobs using Amazon CloudWatch metrics, alarms, and dashboards to optimize performance, cost, and operational efficiency.
Use AWS Deep Learning Containers with Amazon SageMaker AI managed MLflow
In this post, we show how to integrate AWS DLCs with MLflow to create a solution that balances infrastructure control with robust ML governance. We walk through a functional setup that your team can use to meet your specialized requirements while significantly reducing the time and resources needed for ML lifecycle management.
Build Agentic Workflows with OpenAI GPT OSS on Amazon SageMaker AI and Amazon Bedrock AgentCore
In this post, we show how to deploy gpt-oss-20b model to SageMaker managed endpoints and demonstrate a practical stock analyzer agent assistant example with LangGraph, a powerful graph-based framework that handles state management, coordinated workflows, and persistent memory systems.
Streamline access to ISO-rating content changes with Verisk rating insights and Amazon Bedrock
In this post, we dive into how Verisk Rating Insights, powered by Amazon Bedrock, large language models (LLM), and Retrieval Augmented Generation (RAG), is transforming the way customers interact with and access ISO ERC changes.
Unified multimodal access layer for Quora’s Poe using Amazon Bedrock
In this post, we explore how the AWS Generative AI Innovation Center and Quora collaborated to build a unified wrapper API framework that dramatically accelerates the deployment of Amazon Bedrock FMs on Quora’s Poe system. We detail the technical architecture that bridges Poe’s event-driven ServerSentEvents protocol with Amazon Bedrock REST-based APIs, demonstrate how a template-based configuration system reduced deployment time from days to 15 minutes, and share implementation patterns for protocol translation, error handling, and multi-modal capabilities.
How msg enhanced HR workforce transformation with Amazon Bedrock and msg.ProfileMap
In this post, we share how msg automated data harmonization for msg.ProfileMap, using Amazon Bedrock to power its large language model (LLM)-driven data enrichment workflows, resulting in higher accuracy in HR concept matching, reduced manual workload, and improved alignment with compliance requirements under the EU AI Act and GDPR.
Unlock model insights with log probability support for Amazon Bedrock Custom Model Import
In this post, we explore how log probabilities work with imported models in Amazon Bedrock. You will learn what log probabilities are, how to enable them in your API calls, and how to interpret the returned data. We also highlight practical applications—from detecting potential hallucinations to optimizing RAG systems and evaluating fine-tuned models—that demonstrate how these insights can improve your AI applications, helping you build more trustworthy solutions with your custom models.
Migrate from Anthropic’s Claude 3.5 Sonnet to Claude 4 Sonnet on Amazon Bedrock
This post provides a systematic approach to migrating from Anthropic’s Claude 3.5 Sonnet to Claude 4 Sonnet on Amazon Bedrock. We examine the key model differences, highlight essential migration considerations, and deliver proven best practices to transform this necessary transition into a strategic advantage that drives measurable value for your organization.
Enhance video understanding with Amazon Bedrock Data Automation and open-set object detection
In real-world video and image analysis, businesses often face the challenge of detecting objects that weren’t part of a model’s original training set. This becomes especially difficult in dynamic environments where new, unknown, or user-defined objects frequently appear. In this post, we explore how Amazon Bedrock Data Automation uses OSOD to enhance video understanding.
How Skello uses Amazon Bedrock to query data in a multi-tenant environment while keeping logical boundaries
Skello is a leading human resources (HR) software as a service (SaaS) solution focusing on employee scheduling and workforce management. Catering to diverse sectors such as hospitality, retail, healthcare, construction, and industry, Skello offers features including schedule creation, time tracking, and payroll preparation. We dive deep into the challenges of implementing large language models (LLMs) for data querying, particularly in the context of a French company operating under the General Data Protection Regulation (GDPR).