AWS Machine Learning Blog
Category: Artificial Intelligence
Create and manage Amazon EMR Clusters from SageMaker Studio to run interactive Spark and ML workloads – Part 1
February 2024: This blog post was reviewed and updated to include an updated AWS CloudFormation stack to comply with a recent Python3.7 lambda deprecation policy. Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning (ML). It provides a single, web-based visual interface where you can perform all ML development steps, […]
Improve the return on your marketing investments with intelligent user segmentation in Amazon Personalize
Today, we’re excited to announce intelligent user segmentation powered by machine learning (ML) in Amazon Personalize, a new way to deliver personalized experiences to your users and run more effective campaigns through your marketing channels. Traditionally, user segmentation depends on demographic or psychographic information to sort users into predefined audiences. More advanced techniques look to […]
Amazon Personalize announces recommenders optimized for Retail and Media & Entertainment
Today, we’re excited to announce the launch of personalized recommenders in Amazon Personalize that are optimized for retail and media and entertainment, making it even easier to personalize your websites, apps, and marketing campaigns. With this launch, we have drawn on Amazon’s rich experience creating unique personalized user experiences using machine learning (ML) to build […]
Build MLOps workflows with Amazon SageMaker projects, GitLab, and GitLab pipelines
Machine learning operations (MLOps) are key to effectively transition from an experimentation phase to production. The practice provides you the ability to create a repeatable mechanism to build, train, deploy, and manage machine learning models. To quickly adopt MLOps, you often require capabilities that use your existing toolsets and expertise. Projects in Amazon SageMaker give […]
Bring Your Amazon SageMaker model into Amazon Redshift for remote inference
July 2024: This post was reviewed and updated for accuracy. Amazon Redshift, a fast, fully managed, widely used cloud data warehouse, natively integrates with Amazon SageMaker for machine learning (ML). Tens of thousands of customers use Amazon Redshift to process exabytes of data every day to power their analytics workloads. Data analysts and database developers […]
Run distributed hyperparameter and neural architecture tuning jobs with Syne Tune
Today we announce the general availability of Syne Tune, an open-source Python library for large-scale distributed hyperparameter and neural architecture optimization. It provides implementations of several state-of-the-art global optimizers, such as Bayesian optimization, Hyperband, and population-based training. Additionally, it supports constrained and multi-objective optimization, and allows you to bring your own global optimization algorithm. With […]
Your guide to AI and ML at AWS re:Invent 2021
It’s almost here! Only 9 days until AWS re:Invent 2021, and we’re very excited to share some highlights you might enjoy this year. The AI/ML team has been working hard to serve up some amazing content and this year, we have more session types for you to enjoy. Back in person, we now have chalk […]
AWS AI/ML Community attendee guides to AWS re:Invent 2021
The AWS AI/ML Community has compiled a series of session guides to AWS re:Invent 2021 to help you get the most out of re:Invent this year. They covered four distinct categories relevant to AI/ML. With a number of our guide authors attending re:Invent virtually, you will find a balance between virtually accessible sessions and sessions […]
Understand drivers that influence your forecasts with explainability impact scores in Amazon Forecast
We’re excited to launch explainability impact scores in Amazon Forecast, which help you understand the factors that impact your forecasts for specific items and time durations of interest. Forecast is a managed service for developers that uses machine learning (ML) to generate more accurate demand forecasts, without requiring any ML experience. To increase forecast model […]
New Amazon Forecast API that creates up to 40% more accurate forecasts and provides explainability
We’re excited to announce a new forecasting API for Amazon Forecast that generates up to 40% more accurate forecasts and helps you understand which factors, such as price, holidays, weather, or item category, are most influencing your forecasts. Forecast uses machine learning (ML) to generate more accurate demand forecasts, without requiring any ML experience. Forecast […]