Artificial Intelligence
Category: Amazon SageMaker
Perform interactive data engineering and data science workflows from Amazon SageMaker Studio notebooks
Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning (ML). With a single click, data scientists and developers can quickly spin up Studio notebooks to explore and prepare datasets to build, train, and deploy ML models in a single pane of glass. We’re excited to announce a new set of […]
Launch Amazon SageMaker Studio from external applications using presigned URLs
Amazon SageMaker Studio provides a single, web-based visual interface where you can perform all ML development steps, improving data science team productivity by up to 10 times. Studio gives you complete access, control, and visibility into each step required to build, train, and deploy models. You can quickly upload data, create new notebooks, train and […]
Define and run Machine Learning pipelines on Step Functions using Python, Workflow Studio, or States Language
May 2024: This post was reviewed and updated for accuracy. You can use various tools to define and run machine learning (ML) pipelines or DAGs (Directed Acyclic Graphs). Some popular options include AWS Step Functions, Apache Airflow, KubeFlow Pipelines (KFP), TensorFlow Extended (TFX), Argo, Luigi, and Amazon SageMaker Pipelines. All these tools help you compose […]
Build machine learning at the edge applications using Amazon SageMaker Edge Manager and AWS IoT Greengrass V2
Running machine learning (ML) models at the edge can be a powerful enhancement for Internet of Things (IoT) solutions that must perform inference without a constant connection back to the cloud. Although there are numerous ways to train ML models for countless applications, effectively optimizing and deploying these models for IoT devices can present many […]
Schedule an Amazon SageMaker Data Wrangler flow to process new data periodically using AWS Lambda functions
Data scientists can spend up to 80% of their time preparing data for machine learning (ML) projects. This preparation process is largely undifferentiated and tedious work, and can involve multiple programming APIs and custom libraries. Announced at AWS re:Invent 2020, Amazon SageMaker Data Wrangler reduces the time it takes to aggregate and prepare data for […]
Fine-tune and host Hugging Face BERT models on Amazon SageMaker
The last few years have seen the rise of transformer deep learning architectures to build natural language processing (NLP) model families. The adaptations of the transformer architecture in models such as BERT, RoBERTa, T5, GPT-2, and DistilBERT outperform previous NLP models on a wide range of tasks, such as text classification, question answering, summarization, and […]
Dive deep into Amazon SageMaker Studio Classis Notebooks architecture
NOTE: Amazon SageMaker Studio and Amazon SageMaker Studio Classic are two of the machine learning environments that you can use to interact with SageMaker. If your domain was created after November 30, 2023, Studio is your default experience. If your domain was created before November 30, 2023, Amazon SageMaker Studio Classic is your default experience. […]
Use a SageMaker Pipeline Lambda step for lightweight model deployments
With Amazon SageMaker Pipelines, you can create, automate, and manage end-to-end machine learning (ML) workflows at scale. SageMaker Projects build on SageMaker Pipelines by providing several MLOps templates that automate model building and deployment pipelines using continuous integration and continuous delivery (CI/CD). To help you get started, SageMaker Pipelines provides many predefined step types, such […]
Access an Amazon SageMaker Studio notebook from a corporate network
Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning. It provides a single, web-based visual interface where you can perform all ML development steps required to build, train, and deploy models. You can quickly upload data, create new notebooks, train and tune models, move back and forth between steps to […]
Migrate your work to an Amazon SageMaker notebook instance with Amazon Linux 2
Amazon SageMaker notebook instances now support Amazon Linux 2, so you can now create a new Amazon SageMaker notebook instance to start developing your machine learning (ML) models with the latest updates. An obvious question is: what do I need to do to migrate my work from an existing notebook instance that runs on Amazon […]