AWS Machine Learning Blog
Category: Amazon SageMaker
Data visualization and anomaly detection using Amazon Athena and Pandas from Amazon SageMaker
Many organizations use Amazon SageMaker for their machine learning (ML) requirements and source data from a data lake stored on Amazon Simple Storage Service (Amazon S3). The petabyte scale source data on Amazon S3 may not always be clean because data lakes ingest data from several source systems, such as like flat files, external feeds, […]
Football tracking in the NFL with Amazon SageMaker
With the 2020 football season kicking off, Amazon Web Services (AWS) is continuing its work with the National Football League (NFL) on several ongoing game-changing initiatives. Specifically, the NFL and AWS are teaming up to develop state-of-the-art cloud technology using machine learning (ML) aimed at aiding the officiating process through real-time football detection. As a […]
Preventing customer churn by optimizing incentive programs using stochastic programming
In recent years, businesses are increasingly looking for ways to integrate the power of machine learning (ML) into business decision-making. This post demonstrates the use case of creating an optimal incentive program to offer customers identified as being at risk of leaving for a competitor, or churning. It extends a popular ML use case, predicting […]
Streamline modeling with Amazon SageMaker Studio and the Amazon Experiments SDK
The modeling phase is a highly iterative process in machine learning (ML) projects, where data scientists experiment with various data preprocessing and feature engineering strategies, intertwined with different model architectures, which are then trained with disparate sets of hyperparameter values. This highly iterative process with many moving parts can, over time, manifest into a tremendous […]
Gaining insights into winning football strategies using machine learning
University of Illinois, Urbana Champaign (UIUC) has partnered with the Amazon Machine Learning Solutions Lab to help UIUC football coaches prepare for games more efficiently and improve their odds of winning. Previously, coaches prepared for games by creating a game planning sheet that only featured types of plays for a certain down and distance, and […]
Activity detection on a live video stream with Amazon SageMaker
Live video streams are continuously generated across industries including media and entertainment, retail, and many more. Live events like sports, music, news, and other special events are broadcast for viewers on TV and other online streaming platforms. AWS customers increasingly rely on machine learning (ML) to generate actionable insights in real time and deliver an […]
Reducing training time with Apache MXNet and Horovod on Amazon SageMaker
Amazon SageMaker is a fully managed service that provides every developer and data scientist with the ability to build, train, and deploy machine learning (ML) models quickly. Amazon SageMaker removes the heavy lifting from each step of the ML process to make it easier to develop high-quality models. As datasets continue to increase in size, […]
Using the Amazon SageMaker Studio Image Build CLI to build container images from your Studio JupyterLab notebooks
April 2025: This post was reviewed and updated for accuracy. The Amazon SageMaker Studio Image Build convenience package allows data scientists and developers to easily build custom container images from your Studio JupyterLab notebooks via CLI. The CLI eliminates the need to manually set up and connect to Docker build environments for building container images […]
Ensure efficient compute resources on Amazon SageMaker
November 2023: This post was reviewed and updated for accuracy. The adaptability of Amazon SageMaker allows you to manage more tasks with fewer resources, resulting in a faster, more efficient workload. SageMaker is a fully managed service that allows you to build, train, deploy, and monitor machine learning (ML) models. Its modular design lets you […]
Automated monitoring of your machine learning models with Amazon SageMaker Model Monitor and sending predictions to human review workflows using Amazon A2I
When machine learning (ML) is deployed in production, monitoring the model is important for maintaining the quality of predictions. Although the statistical properties of the training data are known in advance, real-life data can gradually deviate over time and impact the prediction results of your model, a phenomenon known as data drift. Detecting these conditions […]