AWS Machine Learning Blog

Category: Amazon SageMaker

Visualizing TensorFlow training jobs with TensorBoard

TensorBoard is an open source toolkit for TensorFlow users that allows you to visualize a wide range of useful information about your model, from model graphs; to loss, accuracy, or custom metrics; to embedding projections, images, and histograms of weights and biases. This post demonstrates how to use TensorBoard with Amazon SageMaker training jobs, write […]

Building a customized recommender system in Amazon SageMaker

Recommender systems help you tailor customer experiences on online platforms. Amazon Personalize is an artificial intelligence and machine learning service that specializes in developing recommender system solutions. It automatically examines the data, performs feature and algorithm selection, optimizes the model based on your data, and deploys and hosts the model for real-time recommendation inference. However, […]

The fastest driver in Formula 1

This blog post was co-authored, and includes an introduction, by Rob Smedley, Director of Data Systems at Formula 1 Formula 1 (F1) racing is the most complex sport in the world. It is the blended perfection of human and machine that create the winning formula. It is this blend that makes F1 racing, or more […]

Accessing data sources from Amazon SageMaker R kernels

Amazon SageMaker notebooks now support R out-of-the-box, without needing you to manually install R kernels on the instances. Also, the notebooks come pre-installed with the reticulate library, which offers an R interface for the Amazon SageMaker Python SDK and enables you to invoke Python modules from within an R script. You can easily run machine […]

Machine learning best practices in financial services

We recently published a new whitepaper, Machine Learning Best Practices in Financial Services, that outlines security and model governance considerations for financial institutions building machine learning (ML) workflows. The whitepaper discusses common security and compliance considerations and aims to accompany a hands-on demo and workshop that walks you through an end-to-end example. Although the whitepaper […]

Safely deploying and monitoring Amazon SageMaker endpoints with AWS CodePipeline and AWS CodeDeploy

As machine learning (ML) applications become more popular, customers are looking to streamline the process for developing, deploying, and continuously improving models. To reliably increase the frequency and quality of this cycle, customers are turning to ML operations (MLOps), which is the discipline of bringing continuous delivery principles and practices to the data science team. […]

Deploying your own data processing code in an Amazon SageMaker Autopilot inference pipeline

The machine learning (ML) model-building process requires data scientists to manually prepare data features, select an appropriate algorithm, and optimize its model parameters. It involves a lot of effort and expertise. Amazon SageMaker Autopilot removes the heavy lifting required by this ML process. It inspects your dataset, generates several ML pipelines, and compares their performance […]

Multi-GPU and distributed training using Horovod in Amazon SageMaker Pipe mode

There are many techniques to train deep learning models with a small amount of data. Examples include transfer learning, few-shot learning, or even one-shot learning for an image classification task and fine-tuning for language models based on a pre-trained BERT or GPT2 model. However, you may still have a use case in which you need […]

Building machine learning workflows with Amazon SageMaker Processing jobs and AWS Step Functions

Machine learning (ML) workflows orchestrate and automate sequences of ML tasks, including data collection, training, testing, evaluating an ML model, and deploying the models for inference. AWS Step Functions automates and orchestrates Amazon SageMaker-related tasks in an end-to-end workflow. The AWS Step Functions Data Science Software Development Kit (SDK) is an open-source library that allows […]

Code-free machine learning: AutoML with AutoGluon, Amazon SageMaker, and AWS Lambda

One of AWS’s goals is to put machine learning (ML) in the hands of every developer. With the open-source AutoML library AutoGluon, deployed using Amazon SageMaker and AWS Lambda, we can take this a step further, putting ML in the hands of anyone who wants to make predictions based on data—no prior programming or data […]