Artificial Intelligence
Category: Amazon SageMaker
Gain valuable ML skills with the AWS Machine Learning Engineer Nanodegree Scholarship from Udacity
Support for AWS DeepComposer will be ending soon. Please see Support for AWS DeepComposer ending soon for more details. Amazon Web Services is partnering with Udacity to help educate developers of all skill levels on machine learning (ML) concepts with the AWS Machine Learning Scholarship Program by Udacity by offering 425 scholarships, with a focus […]
How Contentsquare reduced TensorFlow inference latency with TensorFlow Serving on Amazon SageMaker
In this post, we present the results of a model serving experiment made by Contentsquare scientists with an innovative DL model trained to analyze HTML documents. We show how the Amazon SageMaker TensorFlow Serving solution helped Contentsquare address several serving challenges. Contentsquare’s challenge Contentsquare is a fast-growing French technology company empowering brands to build better […]
Host multiple TensorFlow computer vision models using Amazon SageMaker multi-model endpoints
Amazon SageMaker helps data scientists and developers prepare, build, train, and deploy high-quality machine learning (ML) models quickly by bringing together a broad set of capabilities purpose-built for ML. SageMaker accelerates innovation within your organization by providing purpose-built tools for every step of ML development, including labeling, data preparation, feature engineering, statistical bias detection, AutoML, […]
It’s a wrap for Amazon SageMaker Month, 30 days of content, discussions, and news
Did you miss SageMaker Month? Don’t look any further than this round-up post to get caught up. In this post, we share key highlights and learning materials to accelerate your machine learning (ML) innovation. On April 20, 2021, we launched the first ever Amazon SageMaker Month, 30 days of hands-on workshops, tech talks, Twitch sessions, […]
Enhance sports narratives with natural language generation using Amazon SageMaker
This blog post was co-authored by Arbi Tamrazian, Director of Data Science and Machine Learning at Fox Sports. FOX Sports is the sports television arm of FOX Network. The company used machine learning (ML) and Amazon SageMaker to streamline the production of relevant in-game storylines for commentators to use during live broadcasts. “We collaborated with […]
How lekker got more insights into their customer churn model with Amazon SageMaker Debugger
With over 400,000 customers, lekker Energie GmbH is a leading supraregional provider of electricity and gas on the German energy market. lekker is customer and service oriented and regularly scores top marks in comparison tests. As one of the most important suppliers of green electricity to private households, the company, with its 220 employees, stands […]
Reduce ML inference costs on Amazon SageMaker with hardware and software acceleration
Amazon SageMaker is a fully-managed service that enables data scientists and developers to build, train, and deploy machine learning (ML) models at 50% lower TCO than self-managed deployments on Elastic Compute Cloud (Amazon EC2). Elastic Inference is a capability of SageMaker that delivers 20% better performance for model inference than AWS Deep Learning Containers on […]
Automate feature engineering pipelines with Amazon SageMaker
The process of extracting, cleaning, manipulating, and encoding data from raw sources and preparing it to be consumed by machine learning (ML) algorithms is an important, expensive, and time-consuming part of data science. Managing these data pipelines for either training or inference is a challenge for data science teams, however, and can take valuable time […]
Speed up YOLOv4 inference to twice as fast on Amazon SageMaker
Machine learning (ML) models have been deployed successfully across a variety of use cases and industries, but due to the high computational complexity of recent ML models such as deep neural networks, inference deployments have been limited by performance and cost constraints. To add to the challenge, preparing a model for inference involves packaging the […]
Prepare data for predicting credit risk using Amazon SageMaker Data Wrangler and Amazon SageMaker Clarify
For data scientists and machine learning (ML) developers, data preparation is one of the most challenging and time-consuming tasks of building ML solutions. In an often iterative and highly manual process, data must be sourced, analyzed, cleaned, and enriched before it can be used to train an ML model. Typical tasks associated with data preparation […]







