Artificial Intelligence

Category: Amazon SageMaker

How Twilio used Amazon SageMaker MLOps pipelines with PrestoDB to enable frequent model retraining and optimized batch transform

This post is co-written with Shamik Ray, Srivyshnav K S, Jagmohan Dhiman and Soumya Kundu from Twilio. Today’s leading companies trust Twilio’s Customer Engagement Platform (CEP) to build direct, personalized relationships with their customers everywhere in the world. Twilio enables companies to use communications and data to add intelligence and security to every step of […]

Use weather data to improve forecasts with Amazon SageMaker Canvas

Photo by Zbynek Burival on Unsplash Time series forecasting is a specific machine learning (ML) discipline that enables organizations to make informed planning decisions. The main idea is to supply historic data to an ML algorithm that can identify patterns from the past and then use those patterns to estimate likely values about unseen periods […]

Get started quickly with AWS Trainium and AWS Inferentia using AWS Neuron DLAMI and AWS Neuron DLC

Starting with the AWS Neuron 2.18 release, you can now launch Neuron DLAMIs (AWS Deep Learning AMIs) and Neuron DLCs (AWS Deep Learning Containers) with the latest released Neuron packages on the same day as the Neuron SDK release. When a Neuron SDK is released, you’ll now be notified of the support for Neuron DLAMIs […]

Code generation using Code Llama 70B and Mixtral 8x7B on Amazon SageMaker

In the ever-evolving landscape of machine learning and artificial intelligence (AI), large language models (LLMs) have emerged as powerful tools for a wide range of natural language processing (NLP) tasks, including code generation. Among these cutting-edge models, Code Llama 70B stands out as a true heavyweight, boasting an impressive 70 billion parameters. Developed by Meta […]

Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart

Today, we are excited to announce that the Jina Embeddings v2 model, developed by Jina AI, is available for customers through Amazon SageMaker JumpStart to deploy with one click for running model inference. This state-of-the-art model supports an impressive 8,192-tokens context length. You can deploy this model with SageMaker JumpStart, a machine learning (ML) hub […]

Prioritizing employee well-being: An innovative approach with generative AI and Amazon SageMaker Canvas

In today’s fast-paced corporate landscape, employee mental health has become a crucial aspect that organizations can no longer overlook. Many companies recognize that their greatest asset lies in their dedicated workforce, and each employee plays a vital role in collective success. As such, promoting employee well-being by creating a safe, inclusive, and supportive environment is […]

Falcon 2 11B is now available on Amazon SageMaker JumpStart

Today, we are excited to announce that the first model in the next generation Falcon 2 family, the Falcon 2 11B foundation model (FM) from Technology Innovation Institute (TII), is available through Amazon SageMaker JumpStart to deploy and run inference. Falcon 2 11B is a trained dense decoder model on a 5.5 trillion token dataset […]

Fine-tune large multimodal models using Amazon SageMaker

Large multimodal models (LMMs) integrate multiple data types into a single model. By combining text data with images and other modalities during training, multimodal models such as Claude3, GPT-4V, and Gemini Pro Vision gain more comprehensive understanding and improved ability to process diverse data types. The multimodal approach allows models to handle a wider range […]

Accelerate Mixtral 8x7B pre-training with expert parallelism on Amazon SageMaker

Mixture of Experts (MoE) architectures for large language models (LLMs) have recently gained popularity due to their ability to increase model capacity and computational efficiency compared to fully dense models. By utilizing sparse expert subnetworks that process different subsets of tokens, MoE models can effectively increase the number of parameters while requiring less computation per […]

Solution architecture

Generating fashion product descriptions by fine-tuning a vision-language model with SageMaker and Amazon Bedrock

This post shows you how to predict domain-specific product attributes from product images by fine-tuning a VLM on a fashion dataset using Amazon SageMaker, and then using Amazon Bedrock to generate product descriptions using the predicted attributes as input. So you can follow along, we’re sharing the code in a GitHub repository.