Artificial Intelligence
Category: Learning Levels
Scaling medical content review at Flo Health using Amazon Bedrock (Part 1)
This two-part series explores Flo Health’s journey with generative AI for medical content verification. Part 1 examines our proof of concept (PoC), including the initial solution, capabilities, and early results. Part 2 covers focusing on scaling challenges and real-world implementation. Each article stands alone while collectively showing how AI transforms medical content management at scale.
Detect and redact personally identifiable information using Amazon Bedrock Data Automation and Guardrails
This post shows an automated PII detection and redaction solution using Amazon Bedrock Data Automation and Amazon Bedrock Guardrails through a use case of processing text and image content in high volumes of incoming emails and attachments. The solution features a complete email processing workflow with a React-based user interface for authorized personnel to more securely manage and review redacted email communications and attachments. We walk through the step-by-step solution implementation procedures used to deploy this solution. Finally, we discuss the solution benefits, including operational efficiency, scalability, security and compliance, and adaptability.
Speed meets scale: Load testing SageMakerAI endpoints with Observe.AI’s testing tool
Observe.ai developed the One Load Audit Framework (OLAF), which integrates with SageMaker to identify bottlenecks and performance issues in ML services, offering latency and throughput measurements under both static and dynamic data loads. In this blog post, you will learn how to use the OLAF utility to test and validate your SageMaker endpoint.
Build an AI-powered website assistant with Amazon Bedrock
This post demonstrates how to solve this challenge by building an AI-powered website assistant using Amazon Bedrock and Amazon Bedrock Knowledge Bases.
Optimizing LLM inference on Amazon SageMaker AI with BentoML’s LLM- Optimizer
In this post, we demonstrate how to optimize large language model (LLM) inference on Amazon SageMaker AI using BentoML’s LLM-Optimizer to systematically identify the best serving configurations for your workload.
Accelerate Enterprise AI Development using Weights & Biases and Amazon Bedrock AgentCore
In this post, we demonstrate how to use Foundation Models (FMs) from Amazon Bedrock and the newly launched Amazon Bedrock AgentCore alongside W&B Weave to help build, evaluate, and monitor enterprise AI solutions. We cover the complete development lifecycle from tracking individual FM calls to monitoring complex agent workflows in production.
Accelerating your marketing ideation with generative AI – Part 1: From idea to generation with the Amazon Nova foundation models
In this post, the first of a series of three, we focus on how you can use Amazon Nova to streamline, simplify, and accelerate marketing campaign creation through generative AI. We show how Bancolombia, one of Colombia’s largest banks, is experimenting with the Amazon Nova models to generate visuals for their marketing campaigns.
Move Beyond Chain-of-Thought with Chain-of-Draft on Amazon Bedrock
This post explores Chain-of-Draft (CoD), an innovative prompting technique introduced in a Zoom AI Research paper Chain of Draft: Thinking Faster by Writing Less, that revolutionizes how models approach reasoning tasks. While Chain-of-Thought (CoT) prompting has been the go-to method for enhancing model reasoning, CoD offers a more efficient alternative that mirrors human problem-solving patterns—using concise, high-signal thinking steps rather than verbose explanations.
Build a multimodal generative AI assistant for root cause diagnosis in predictive maintenance using Amazon Bedrock
In this post, we demonstrate how to implement a predictive maintenance solution using Foundation Models (FMs) on Amazon Bedrock, with a case study of Amazon’s manufacturing equipment within their fulfillment centers. The solution is highly adaptable and can be customized for other industries, including oil and gas, logistics, manufacturing, and healthcare.
Bi-directional streaming for real-time agent interactions now available in Amazon Bedrock AgentCore Runtime
In this post, you will learn about bi-directional streaming on AgentCore Runtime and the prerequisites to create a WebSocket implementation. You will also learn how to use Strands Agents to implement a bi-directional streaming solution for voice agents.









