AWS Machine Learning Blog

Category: Learning Levels

Amazon Bedrock launches Session Management APIs for generative AI applications (Preview)

Amazon Bedrock announces the preview launch of Session Management APIs, a new capability that enables developers to simplify state and context management for generative AI applications built with popular open source frameworks such as LangGraph and LlamaIndex. Session Management APIs provide an out-of-the-box solution that enables developers to securely manage state and conversation context across […]

Enhance deployment guardrails with inference component rolling updates for Amazon SageMaker AI inference

In this post, we discuss the challenges faced by organizations when updating models in production. Then we deep dive into the new rolling update feature for inference components and provide practical examples using DeepSeek distilled models to demonstrate this feature. Finally, we explore how to set up rolling updates in different scenarios.

Picture-7-Feature-Image-Virtual AI Assistant using Amazon Q Business

Build a generative AI enabled virtual IT troubleshooting assistant using Amazon Q Business

Discover how to build a GenAI powered virtual IT troubleshooting assistant using Amazon Q Business. This innovative solution integrates with popular ITSM tools like ServiceNow, Atlassian Jira, and Confluence to streamline information retrieval and enhance collaboration across your organization. By harnessing the power of generative AI, this assistant can significantly boost operational efficiency and provide 24/7 support tailored to individual needs. Learn how to set up, configure, and leverage this solution to transform your enterprise information management.

Process formulas and charts with Anthropic’s Claude on Amazon Bedrock

In this post, we explore how you can use these multi-modal generative AI models to streamline the management of technical documents. By extracting and structuring the key information from the source materials, the models can create a searchable knowledge base that allows you to quickly locate the data, formulas, and visualizations you need to support your work.

Streamline AWS resource troubleshooting with Amazon Bedrock Agents and AWS Support Automation Workflows

AWS provides a powerful tool called AWS Support Automation Workflows, which is a collection of curated AWS Systems Manager self-service automation runbooks. These runbooks are created by AWS Support Engineering with best practices learned from solving customer issues. They enable AWS customers to troubleshoot, diagnose, and remediate common issues with their AWS resources. In this post, we explore how to use the power of Amazon Bedrock Agents and AWS Support Automation Workflows to create an intelligent agent capable of troubleshooting issues with AWS resources.

workflow diagram

Create generative AI agents that interact with your companies’ systems in a few clicks using Amazon Bedrock in Amazon SageMaker Unified Studio

In this post, we demonstrate how to use Amazon Bedrock in SageMaker Unified Studio to build a generative AI application to integrate with an existing endpoint and database.

vector embeddings

Build your gen AI–based text-to-SQL application using RAG, powered by Amazon Bedrock (Claude 3 Sonnet and Amazon Titan for embedding)

In this post, we explore using Amazon Bedrock to create a text-to-SQL application using RAG. We use Anthropic’s Claude 3.5 Sonnet model to generate SQL queries, Amazon Titan in Amazon Bedrock for text embedding and Amazon Bedrock to access these models.

Unleash AI innovation with Amazon SageMaker HyperPod

In this post, we show how SageMaker HyperPod, and its new features introduced at AWS re:Invent 2024, is designed to meet the demands of modern AI workloads, offering a persistent and optimized cluster tailored for distributed training and accelerated inference at cloud scale and attractive price-performance.

Evaluating RAG applications with Amazon Bedrock knowledge base evaluation

This post focuses on RAG evaluation with Amazon Bedrock Knowledge Bases, provides a guide to set up the feature, discusses nuances to consider as you evaluate your prompts and responses, and finally discusses best practices. By the end of this post, you will understand how the latest Amazon Bedrock evaluation features can streamline your approach to AI quality assurance, enabling more efficient and confident development of RAG applications.

Revolutionizing customer service: MaestroQA’s integration with Amazon Bedrock for actionable insight

In this post, we dive deeper into one of MaestroQA’s key features—conversation analytics, which helps support teams uncover customer concerns, address points of friction, adapt support workflows, and identify areas for coaching through the use of Amazon Bedrock. We discuss the unique challenges MaestroQA overcame and how they use AWS to build new features, drive customer insights, and improve operational inefficiencies.