Artificial Intelligence

Category: Advanced (300)

Host ML models on Amazon SageMaker using Triton: TensorRT models

Sometimes it can be very beneficial to use tools such as compilers that can modify and compile your models for optimal inference performance. In this post, we explore TensorRT and how to use it with Amazon SageMaker inference using NVIDIA Triton Inference Server. We explore how TensorRT works and how to host and optimize these […]

Build an image search engine with Amazon Kendra and Amazon Rekognition

In this post, we discuss a machine learning (ML) solution for complex image searches using Amazon Kendra and Amazon Rekognition. Specifically, we use the example of architecture diagrams for complex images due to their incorporation of numerous different visual icons and text. With the internet, searching and obtaining an image has never been easier. Most […]

Achieve high performance with lowest cost for generative AI inference using AWS Inferentia2 and AWS Trainium on Amazon SageMaker

The world of artificial intelligence (AI) and machine learning (ML) has been witnessing a paradigm shift with the rise of generative AI models that can create human-like text, images, code, and audio. Compared to classical ML models, generative AI models are significantly bigger and more complex. However, their increasing complexity also comes with high costs […]

Implement backup and recovery using an event-driven serverless architecture with Amazon SageMaker Studio

Amazon SageMaker Studio is the first fully integrated development environment (IDE) for ML. It provides a single, web-based visual interface where you can perform all machine learning (ML) development steps required to build, train, tune, debug, deploy, and monitor models. It gives data scientists all the tools you need to take ML models from experimentation […]

How Vericast optimized feature engineering using Amazon SageMaker Processing

This post is co-written by Jyoti Sharma and Sharmo Sarkar from Vericast. For any machine learning (ML) problem, the data scientist begins by working with data. This includes gathering, exploring, and understanding the business and technical aspects of the data, along with evaluation of any manipulations that may be needed for the model building process. […]

Amazon SageMaker Data Wrangler for dimensionality reduction

In the world of machine learning (ML), the quality of the dataset is of significant importance to model predictability. Although more data is usually better, large datasets with a high number of features can sometimes lead to non-optimal model performance due to the curse of dimensionality. Analysts can spend a significant amount of time transforming […]

Identify objections in customer conversations using Amazon Comprehend to enhance customer experience without ML expertise

According to a PWC report, 32% of retail customers churn after one negative experience, and 73% of customers say that customer experience influences their purchase decisions. In the global retail industry, pre- and post-sales support are both important aspects of customer care. Numerous methods, including email, live chat, bots, and phone calls, are used to […]

Create SageMaker Pipelines for training, consuming and monitoring your batch use cases

Batch inference is a common pattern where prediction requests are batched together on input, a job runs to process those requests against a trained model, and the output includes batch prediction responses that can then be consumed by other applications or business functions. Running batch use cases in production environments requires a repeatable process for […]

Use streaming ingestion with Amazon SageMaker Feature Store and Amazon MSK to make ML-backed decisions in near-real time

August 30, 2023: Amazon Kinesis Data Analytics has been renamed to Amazon Managed Service for Apache Flink. Read the announcement in the AWS News Blog and learn more. Businesses are increasingly using machine learning (ML) to make near-real-time decisions, such as placing an ad, assigning a driver, recommending a product, or even dynamically pricing products […]

Authoring custom transformations in Amazon SageMaker Data Wrangler using NLTK and SciPy

“Instead of focusing on the code, companies should focus on developing systematic engineering practices for improving data in ways that are reliable, efficient, and systematic. In other words, companies need to move from a model-centric approach to a data-centric approach.” – Andrew Ng A data-centric AI approach involves building AI systems with quality data involving […]