AWS Machine Learning Blog

Category: *Post Types

How Marubeni is optimizing market decisions using AWS machine learning and analytics

This post is co-authored with Hernan Figueroa, Sr. Manager Data Science at Marubeni Power International. Marubeni Power International Inc (MPII) owns and invests in power business platforms in the Americas. An important vertical for MPII is asset management for renewable energy and energy storage assets, which are critical to reduce the carbon intensity of our […]

Portfolio optimization through multidimensional action optimization using Amazon SageMaker RL

Reinforcement learning (RL) encompasses a class of machine learning (ML) techniques that can be used to solve sequential decision-making problems. RL techniques have found widespread applications in numerous domains, including financial services, autonomous navigation, industrial control, and e-commerce. The objective of an RL problem is to train an agent that, given an observation from its […]

Hosting YOLOv8 PyTorch models on Amazon SageMaker Endpoints

Deploying models at scale can be a cumbersome task for many data scientists and machine learning engineers. However, Amazon SageMaker endpoints provide a simple solution for deploying and scaling your machine learning (ML) model inferences. Our last blog post and GitHub repo on hosting a YOLOv5 TensorFlowModel on Amazon SageMaker Endpoints sparked a lot of interest […]

Training large language models on Amazon SageMaker: Best practices

Language models are statistical methods predicting the succession of tokens in sequences, using natural text. Large language models (LLMs) are neural network-based language models with hundreds of millions (BERT) to over a trillion parameters (MiCS), and whose size makes single-GPU training impractical. LLMs’ generative abilities make them popular for text synthesis, summarization, machine translation, and […]

Virtual fashion styling with generative AI using Amazon SageMaker 

The fashion industry is a highly lucrative business, with an estimated value of $2.1 trillion by 2025, as reported by the World Bank. This field encompasses a diverse range of segments, such as the creation, manufacture, distribution, and sales of clothing, shoes, and accessories. The industry is in a constant state of change, with new […]

How Kakao Games automates lifetime value prediction from game data using Amazon SageMaker and AWS Glue

This post is co-written with Suhyoung Kim, General Manager at KakaoGames Data Analytics Lab. Kakao Games is a top video game publisher and developer headquartered in South Korea. It specializes in developing and publishing games on PC, mobile, and virtual reality (VR) serving globally. In order to maximize its players’ experience and improve the efficiency […]

Tune ML models for additional objectives like fairness with SageMaker Automatic Model Tuning

Model tuning is the experimental process of finding the optimal parameters and configurations for a machine learning (ML) model that result in the best possible desired outcome with a validation dataset. Single objective optimization with a performance metric is the most common approach for tuning ML models. However, in addition to predictive performance, there may […]

Achieve high performance at scale for model serving using Amazon SageMaker multi-model endpoints with GPU

Amazon SageMaker multi-model endpoints (MMEs) provide a scalable and cost-effective way to deploy a large number of machine learning (ML) models. It gives you the ability to deploy multiple ML models in a single serving container behind a single endpoint. From there, SageMaker manages loading and unloading the models and scaling resources on your behalf […]

Boomi uses BYOC on Amazon SageMaker Studio to scale custom Markov chain implementation

This post is co-written with Swagata Ashwani, Senior Data Scientist at Boomi. Boomi is an enterprise-level software as a service (SaaS) independent software vendor (ISV) that creates developer enablement tooling for software engineers. These tools integrate via API into Boomi’s core service offering. In this post, we discuss how Boomi used the bring-your-own-container (BYOC) approach […]

MLOps deployment best practices for real-time inference model serving endpoints with Amazon SageMaker

After you build, train, and evaluate your machine learning (ML) model to ensure it’s solving the intended business problem proposed, you want to deploy that model to enable decision-making in business operations. Models that support business-critical functions are deployed to a production environment where a model release strategy is put in place. Given the nature […]