AWS Machine Learning Blog

Category: *Post Types

Fully customizable action space now available on the AWS DeepRacer console

AWS DeepRacer is the fastest way to get rolling with machine learning (ML) through a global racing league, cloud-based 3D racing simulator, and fully autonomous 1/18th scale race car driven by reinforcement learning. Starting today, the model action space is fully customizable yet simplified with new dynamic graphics so developers have greater control and can […]

Read More

How Intel Olympic Technology Group built a smart coaching SaaS application by deploying pose estimation models – Part 1

The Intel Olympic Technology Group (OTG), a division within Intel focused on bringing cutting-edge technology to Olympic athletes, collaborated with AWS Machine Learning Professional Services (MLPS) to build a smart coaching software as a service (SaaS) application using computer vision (CV)-based pose estimation models. Pose estimation is a class of machine learning (ML) model that […]

Read More

Increase your machine learning success with AWS ML services and AWS Machine Learning Embark

This is a guest post from Mikael Graindorge, Sales Operations Leader at Thermo Fisher Scientific. In the life sciences industry, data is growing in abundance and is getting increasingly complex, which makes it challenging to use traditional analytics methodologies. At Thermo Fisher Scientific, our mission is to make the world healthier, cleaner, and safer, and […]

Read More

Amazon SageMaker notebook instances now support Amazon Linux 2

February 8th, 2022: Updated with AWS CloudFormation support to create an Amazon Linux 2 based SageMaker notebook instance. Today, we’re excited to announce that Amazon SageMaker notebook instances support Amazon Linux 2. You can now choose Amazon Linux 2 for your new SageMaker notebook instance to take advantage of the latest update and support provided […]

Read More

Announcing model improvements and lower annotation limits for Amazon Comprehend custom entity recognition

Amazon Comprehend is a natural language processing (NLP) service that provides APIs to extract key phrases, contextual entities, events, sentiment from unstructured text, and more. Entities refer to things in your document such as people, places, organizations, credit card numbers, and so on. But what if you want to add entity types unique to your […]

Read More

Hyundai reduces ML model training time for autonomous driving models using Amazon SageMaker

Hyundai Motor Company, headquartered in Seoul, South Korea, is one of the largest car manufacturers in the world. They have been heavily investing human and material resources in the race to develop self-driving cars, also known as autonomous vehicles. One of the algorithms often used in autonomous driving is semantic segmentation, which is a task […]

Read More

Improve newspaper digitalization efficacy with a generic document segmentation tool using Amazon Textract

We are living in a digital age. Information that used to be spread by printouts is disseminated at unforeseen speeds through digital formats. In parallel to the inventions of new types of media, an increasing number of archives and libraries are trying to create digital repositories with new technologies. Digitization allows for preservation by creating […]

Read More

Automate Amazon SageMaker Studio setup using AWS CDK

Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning (ML). Studio provides a single web-based visual interface where you can perform all ML development steps required to prepare data, as well as build, train, and deploy models. You can quickly upload data, create new notebooks, train and tune models, move […]

Read More

DeepLearning.AI, Coursera, and AWS launch the new Practical Data Science Specialization with Amazon SageMaker

Amazon Web Services (AWS), Coursera, and DeepLearning.AI are excited to announce Practical Data Science, a three-course, 10-week, hands-on specialization designed for data professionals to quickly learn the essentials of machine learning (ML) in the AWS Cloud. DeepLearning.AI was founded in 2017 by Andrew Ng, an ML and education pioneer, to fill a need for world-class […]

Read More

It’s here! Join us for Amazon SageMaker Month, 30 days of content, discussion, and news

Want to accelerate machine learning (ML) innovation in your organization? Join us for 30 days of new Amazon SageMaker content designed to help you build, train, and deploy ML models faster. On April 20, we’re kicking off 30 days of hands-on workshops, Twitch sessions, Slack chats, and partner perspectives. Our goal is to connect you […]

Read More