AWS Machine Learning Blog
Solving numerical optimization problems like scheduling, routing, and allocation with Amazon SageMaker Processing
July 2023: This post was reviewed for accuracy. In this post, we discuss solving numerical optimization problems using the very flexible Amazon SageMaker Processing API. Optimization is the process of finding the minimum (or maximum) of a function that depends on some inputs, called design variables. This pattern is relevant to solving business-critical problems such […]
Running on-demand, serverless Apache Spark data processing jobs using Amazon SageMaker managed Spark containers and the Amazon SageMaker SDK
July 2023: This post was reviewed for accuracy. Apache Spark is a unified analytics engine for large scale, distributed data processing. Typically, businesses with Spark-based workloads on AWS use their own stack built on top of Amazon Elastic Compute Cloud (Amazon EC2), or Amazon EMR to run and scale Apache Spark, Hive, Presto, and other […]
Building a deep neural net–based surrogate function for global optimization using PyTorch on Amazon SageMaker
July 2023: This post was reviewed for accuracy. Optimization is the process of finding the minimum (or maximum) of a function that depends on some inputs, called design variables. Customer X has the following problem: They are about to release a new car model to be designed for maximum fuel efficiency. In reality, thousands of […]
Bring your own hyperparameter optimization algorithm on Amazon SageMaker
July 2023: This post is outdated. We recommend referring to Amazon SageMaker Automatic Model Tuning now supports three new completion criteria for hyperparameter optimization for the latest solution. In this blog post, we’ll discuss how to implement custom, state-of-the-art hyperparameter optimization (HPO) algorithms to tune models on Amazon SageMaker. Amazon SageMaker includes a built-in HPO […]