Artificial Intelligence

Category: Amazon SageMaker Data & AI Governance

Amazon SageMaker AI in 2025, a year in review part 1: Flexible Training Plans and improvements to price performance for inference workloads

In 2025, Amazon SageMaker AI saw dramatic improvements to core infrastructure offerings along four dimensions: capacity, price performance, observability, and usability. In this series of posts, we discuss these various improvements and their benefits. In Part 1, we discuss capacity improvements with the launch of Flexible Training Plans. We also describe improvements to price performance for inference workloads. In Part 2, we discuss enhancements made to observability, model customization, and model hosting.

Amazon SageMaker AI in 2025, a year in review part 2: Improved observability and enhanced features for SageMaker AI model customization and hosting

In 2025, Amazon SageMaker AI made several improvements designed to help you train, tune, and host generative AI workloads. In Part 1 of this series, we discussed Flexible Training Plans and price performance improvements made to inference components. In this post, we discuss enhancements made to observability, model customization, and model hosting. These improvements facilitate a whole new class of customer use cases to be hosted on SageMaker AI.

How CLICKFORCE accelerates data-driven advertising with Amazon Bedrock Agents

In this post, we demonstrate how CLICKFORCE used AWS services to build Lumos and transform advertising industry analysis from weeks-long manual work into an automated, one-hour process.

Build secure RAG applications with AWS serverless data lakes

In this post, we explore how to build a secure RAG application using serverless data lake architecture, an important data strategy to support generative AI development. We use Amazon Web Services (AWS) services including Amazon S3, Amazon DynamoDB, AWS Lambda, and Amazon Bedrock Knowledge Bases to create a comprehensive solution supporting unstructured data assets which can be extended to structured data. The post covers how to implement fine-grained access controls for your enterprise data and design metadata-driven retrieval systems that respect security boundaries. These approaches will help you maximize the value of your organization’s data while maintaining robust security and compliance.

Modern agricultural drone and ground sprayer maintaining curved crop rows showcasing precision farming technology

Accelerating data science innovation: How Bayer Crop Science used AWS AI/ML services to build their next-generation MLOps service

In this post, we show how Bayer Crop Science manages large-scale data science operations by training models for their data analytics needs and maintaining high-quality code documentation to support developers. Through these solutions, Bayer Crop Science projects up to a 70% reduction in developer onboarding time and up to a 30% improvement in developer productivity.

Responsible AI in action: How Data Reply red teaming supports generative AI safety on AWS

In this post, we explore how AWS services can be seamlessly integrated with open source tools to help establish a robust red teaming mechanism within your organization. Specifically, we discuss Data Reply’s red teaming solution, a comprehensive blueprint to enhance AI safety and responsible AI practices.

How iFood built a platform to run hundreds of machine learning models with Amazon SageMaker Inference

In this post, we show how iFood uses SageMaker to revolutionize its ML operations. By harnessing the power of SageMaker, iFood streamlines the entire ML lifecycle, from model training to deployment. This integration not only simplifies complex processes but also automates critical tasks.

Unlock cost-effective AI inference using Amazon Bedrock serverless capabilities with an Amazon SageMaker trained model

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies such as AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI. In this post, I’ll show you how to use Amazon Bedrock—with its fully managed, on-demand API—with your Amazon SageMaker trained or fine-tuned model.