Artificial Intelligence and Machine Learning

Category: Amazon Machine Learning

Fully customizable action space now available on the AWS DeepRacer console

AWS DeepRacer is the fastest way to get rolling with machine learning (ML) through a global racing league, cloud-based 3D racing simulator, and fully autonomous 1/18th scale race car driven by reinforcement learning. Starting today, the model action space is fully customizable yet simplified with new dynamic graphics so developers have greater control and can […]

Define and run Machine Learning pipelines on Step Functions using Python, Workflow Studio, or States Language

May 2024: This post was reviewed and updated for accuracy. You can use various tools to define and run machine learning (ML) pipelines or DAGs (Directed Acyclic Graphs). Some popular options include AWS Step Functions, Apache Airflow, KubeFlow Pipelines (KFP), TensorFlow Extended (TFX), Argo, Luigi, and Amazon SageMaker Pipelines. All these tools help you compose […]

Build machine learning at the edge applications using Amazon SageMaker Edge Manager and AWS IoT Greengrass V2

Running machine learning (ML) models at the edge can be a powerful enhancement for Internet of Things (IoT) solutions that must perform inference without a constant connection back to the cloud. Although there are numerous ways to train ML models for countless applications, effectively optimizing and deploying these models for IoT devices can present many […]

Schedule an Amazon SageMaker Data Wrangler flow to process new data periodically using AWS Lambda functions

Data scientists can spend up to 80% of their time preparing data for machine learning (ML) projects. This preparation process is largely undifferentiated and tedious work, and can involve multiple programming APIs and custom libraries. Announced at AWS re:Invent 2020, Amazon SageMaker Data Wrangler reduces the time it takes to aggregate and prepare data for […]

How Intel Olympic Technology Group built a smart coaching SaaS application by deploying pose estimation models – Part 1

February 9, 2024: Amazon Kinesis Data Firehose has been renamed to Amazon Data Firehose. Read the AWS What’s New post to learn more. The Intel Olympic Technology Group (OTG), a division within Intel focused on bringing cutting-edge technology to Olympic athletes, collaborated with AWS Machine Learning Professional Services (MLPS) to build a smart coaching software […]

Increase your machine learning success with AWS ML services and AWS Machine Learning Embark

This is a guest post from Mikael Graindorge, Sales Operations Leader at Thermo Fisher Scientific. In the life sciences industry, data is growing in abundance and is getting increasingly complex, which makes it challenging to use traditional analytics methodologies. At Thermo Fisher Scientific, our mission is to make the world healthier, cleaner, and safer, and […]

Fine-tune and host Hugging Face BERT models on Amazon SageMaker

The last few years have seen the rise of transformer deep learning architectures to build natural language processing (NLP) model families. The adaptations of the transformer architecture in models such as BERT, RoBERTa, T5, GPT-2, and DistilBERT outperform previous NLP models on a wide range of tasks, such as text classification, question answering, summarization, and […]

Dive deep into Amazon SageMaker Studio Classis Notebooks architecture

NOTE: Amazon SageMaker Studio and Amazon SageMaker Studio Classic are two of the machine learning environments that you can use to interact with SageMaker. If your domain was created after November 30, 2023, Studio is your default experience. If your domain was created before November 30, 2023, Amazon SageMaker Studio Classic is your default experience. […]

Access an Amazon SageMaker Studio notebook from a corporate network

Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning. It provides a single, web-based visual interface where you can perform all ML development steps required to build, train, and deploy models. You can quickly upload data, create new notebooks, train and tune models, move back and forth between steps to […]

Secure multi-account model deployment with Amazon SageMaker: Part 2

In Part 1 of this series of posts, we offered step-by-step guidance for using Amazon SageMaker, SageMaker projects and Amazon SageMaker Pipelines, and AWS services such as Amazon Virtual Private Cloud (Amazon VPC), AWS CloudFormation, AWS Key Management Service (AWS KMS), and AWS Identity and Access Management (IAM) to implement secure architectures for multi-account enterprise […]