AWS Machine Learning Blog

Category: Artificial Intelligence

Generative AI for agriculture: How Agmatix is improving agriculture with Amazon Bedrock

This post describes how Agmatix, a pioneering Agtech company powering R&D for input companies and digital agronomic solutions, uses Amazon Bedrock and AWS fully featured services to enhance the research process and development of higher-yielding seeds and sustainable molecules for global agriculture.

Generate financial industry-specific insights using generative AI and in-context fine-tuning

In this blog post, we demonstrate prompt engineering techniques to generate accurate and relevant analysis of tabular data using industry-specific language. This is done by providing large language models (LLMs) in-context sample data with features and labels in the prompt. The results are similar to fine-tuning LLMs without the complexities of fine-tuning models.

Deliver personalized marketing with Amazon Bedrock Agents

In this post, we demonstrate a solution using Amazon Bedrock Agents, Amazon Bedrock Knowledge Bases, Amazon Bedrock Developer Experience, and Amazon Personalize that allow marketers to save time and deliver efficient personalized advertising using a generative AI enhanced solution. Our solution is a marketing agent that shows how Amazon Personalize can effectively segment target customers based on relevant characteristics and behaviors. Additionally, by using Amazon Bedrock Agents and foundation models (FMs), our tool generates personalized creative content specifically tailored to each purpose. It customizes the tone, creative style, and individual preferences according to each customer’s specific prompt, providing highly customized and effective marketing communications.

Fine-tune Meta Llama 3.2 text generation models for generative AI inference using Amazon SageMaker JumpStart

In this post, we demonstrate how to fine-tune Meta’s latest Llama 3.2 text generation models, Llama 3.2 1B and 3B, using Amazon SageMaker JumpStart for domain-specific applications. By using the pre-built solutions available in SageMaker JumpStart and the customizable Meta Llama 3.2 models, you can unlock the models’ enhanced reasoning, code generation, and instruction-following capabilities to tailor them for your unique use cases.

Discover insights with the Amazon Q Business Microsoft Teams connector

Microsoft Teams is an enterprise collaboration tool that allows you to build a unified workspace for real-time collaboration and communication, meetings, and file and application sharing. You can exchange and store valuable organizational knowledge within Microsoft Teams. Microsoft Teams data is often siloed across different teams, channels, and chats, making it difficult to get a […]

How Zalando optimized large-scale inference and streamlined ML operations on Amazon SageMaker

This post is cowritten with Mones Raslan, Ravi Sharma and Adele Gouttes from Zalando. Zalando SE is one of Europe’s largest ecommerce fashion retailers with around 50 million active customers. Zalando faces the challenge of regular (weekly or daily) discount steering for more than 1 million products, also referred to as markdown pricing. Markdown pricing is […]

Unleashing Stability AI’s most advanced text-to-image models for media, marketing and advertising: Revolutionizing creative workflows

To stay competitive, media, advertising, and entertainment enterprises need to stay abreast of recent dramatic technological developments. Generative AI has emerged as a game-changer, offering unprecedented opportunities for creative professionals to push boundaries and unlock new realms of possibility. At the forefront of this revolution is Stability AI’s  family of cutting-edge text-to-image AI models. These […]

Build a multi-tenant generative AI environment for your enterprise on AWS

While organizations continue to discover the powerful applications of generative AI, adoption is often slowed down by team silos and bespoke workflows. To move faster, enterprises need robust operating models and a holistic approach that simplifies the generative AI lifecycle. In the first part of the series, we showed how AI administrators can build a […]

Enhance customer support with Amazon Bedrock Agents by integrating enterprise data APIs

Generative AI has transformed customer support, offering businesses the ability to respond faster, more accurately, and with greater personalization. AI agents, powered by large language models (LLMs), can analyze complex customer inquiries, access multiple data sources, and deliver relevant, detailed responses. In this post, we guide you through integrating Amazon Bedrock Agents with enterprise data […]