AWS Machine Learning Blog

Category: Artificial Intelligence

Use a SageMaker Pipeline Lambda step for lightweight model deployments

With Amazon SageMaker Pipelines, you can create, automate, and manage end-to-end machine learning (ML) workflows at scale. SageMaker Projects build on SageMaker Pipelines by providing several MLOps templates that automate model building and deployment pipelines using continuous integration and continuous delivery (CI/CD). To help you get started, SageMaker Pipelines provides many predefined step types, such […]

Read More

Access an Amazon SageMaker Studio notebook from a corporate network

Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning. It provides a single, web-based visual interface where you can perform all ML development steps required to build, train, and deploy models. You can quickly upload data, create new notebooks, train and tune models, move back and forth between steps to […]

Read More

Build conversation flows with multi-valued slots in Amazon Lex

Multiple pieces of information are often required to complete a task or to process a query. For example, when talking to an insurance agent, a caller might ask, “Can you provide me quotes for home, auto, and boat?” The agent recognizes this as a list of policy types before continuing with the conversation. Automation of […]

Read More

Migrate your work to an Amazon SageMaker notebook instance with Amazon Linux 2

Amazon SageMaker notebook instances now support Amazon Linux 2, so you can now create a new Amazon SageMaker notebook instance to start developing your machine learning (ML) models with the latest updates. An obvious question is: what do I need to do to migrate my work from an existing notebook instance that runs on Amazon […]

Read More

Amazon SageMaker notebook instances now support Amazon Linux 2

February 8th, 2022: Updated with AWS CloudFormation support to create an Amazon Linux 2 based SageMaker notebook instance. Today, we’re excited to announce that Amazon SageMaker notebook instances support Amazon Linux 2. You can now choose Amazon Linux 2 for your new SageMaker notebook instance to take advantage of the latest update and support provided […]

Read More

Secure multi-account model deployment with Amazon SageMaker: Part 2

In Part 1 of this series of posts, we offered step-by-step guidance for using Amazon SageMaker, SageMaker projects and Amazon SageMaker Pipelines, and AWS services such as Amazon Virtual Private Cloud (Amazon VPC), AWS CloudFormation, AWS Key Management Service (AWS KMS), and AWS Identity and Access Management (IAM) to implement secure architectures for multi-account enterprise […]

Read More

Secure multi-account model deployment with Amazon SageMaker: Part 1

Amazon SageMaker Studio is a web-based, integrated development environment (IDE) for machine learning (ML) that lets you build, train, debug, deploy, and monitor your ML models. Although Studio provides all the tools you need to take your models from experimentation to production, you need a robust and secure model deployment process. This process must fulfill […]

Read More

Optimize personalized recommendations for a business metric of your choice with Amazon Personalize

Amazon Personalize now enables you to optimize personalized recommendations for a business metric of your choice, in addition to improving relevance of recommendations for your users. You can define a business metric such as revenue, profit margin, video watch time, or any other numerical attribute of your item catalog to optimize your recommendations. Amazon Personalize […]

Read More

Create Amazon SageMaker projects using third-party source control and Jenkins

Launched at AWS re:Invent 2020, Amazon SageMaker Pipelines is the first purpose-built, easy-to-use continuous integration and continuous delivery (CI/CD) service for machine learning (ML). With Pipelines, you can create, automate, and manage end-to-end ML workflows at scale. You can integrate Pipelines with existing CI/CD tooling. This includes integration with existing source control systems such as […]

Read More

Use Block Kit when integrating Amazon Lex bots with Slack

If you’re integrating your Amazon Lex chatbots with Slack, chances are you’ll come across Block Kit. Block Kit is a UI framework for Slack apps. Like response cards, Block Kit can help simplify interactions with your users. It offers flexibility to format your bot messages with blocks, buttons, check boxes, date pickers, time pickers, select […]

Read More