AWS Machine Learning Blog

Category: Artificial Intelligence

Improve multi-hop reasoning in LLMs by learning from rich human feedback

Recent large language models (LLMs) have enabled tremendous progress in natural language understanding. However, they are prone to generating confident but nonsensical explanations, which poses a significant obstacle to establishing trust with users. In this post, we show how to incorporate human feedback on the incorrect reasoning chains for multi-hop reasoning to improve performance on […]

How to extend the functionality of AWS Trainium with custom operators

Deep learning (DL) is a fast-evolving field, and practitioners are constantly innovating DL models and inventing ways to speed them up. Custom operators are one of the mechanisms developers use to push the boundaries of DL innovation by extending the functionality of existing machine learning (ML) frameworks such as PyTorch. In general, an operator describes […]

Sample Machine Learning Lifecycle

Deliver your first ML use case in 8–12 weeks

Do you need help to move your organization’s Machine Learning (ML) journey from pilot to production? You’re not alone. Most executives think ML can apply to any business decision, but on average only half of the ML projects make it to production. This post describes how to implement your first ML use case using Amazon […]

Run your local machine learning code as Amazon SageMaker Training jobs with minimal code changes

We recently introduced a new capability in the Amazon SageMaker Python SDK that lets data scientists run their machine learning (ML) code authored in their preferred integrated developer environment (IDE) and notebooks along with the associated runtime dependencies as Amazon SageMaker training jobs with minimal code changes to the experimentation done locally. Data scientists typically […]

Perform intelligent search across emails in your Google workspace using the Gmail connector for Amazon Kendra

Many organizations use Gmail for their business email needs. Gmail for Business is part of Google Workspace, which provides a set of productivity and collaboration tools like Google Drive, Google Docs, Google Sheets, and more. For any organization, emails contain a wealth of information, which could be within the subject of an email, the message […]

Amazon SageMaker Data Wrangler for dimensionality reduction

In the world of machine learning (ML), the quality of the dataset is of significant importance to model predictability. Although more data is usually better, large datasets with a high number of features can sometimes lead to non-optimal model performance due to the curse of dimensionality. Analysts can spend a significant amount of time transforming […]

Identify objections in customer conversations using Amazon Comprehend to enhance customer experience without ML expertise

According to a PWC report, 32% of retail customers churn after one negative experience, and 73% of customers say that customer experience influences their purchase decisions. In the global retail industry, pre- and post-sales support are both important aspects of customer care. Numerous methods, including email, live chat, bots, and phone calls, are used to […]

Create SageMaker Pipelines for training, consuming and monitoring your batch use cases

Batch inference is a common pattern where prediction requests are batched together on input, a job runs to process those requests against a trained model, and the output includes batch prediction responses that can then be consumed by other applications or business functions. Running batch use cases in production environments requires a repeatable process for […]

Improved ML model deployment using Amazon SageMaker Inference Recommender

Each machine learning (ML) system has a unique service level agreement (SLA) requirement with respect to latency, throughput, and cost metrics. With advancements in hardware design, a wide range of CPU- and GPU-based infrastructures are available to help you speed up inference performance. Also, you can build these ML systems with a combination of ML […]

Amazon Comprehend document classifier adds layout support for higher accuracy

The ability to effectively handle and process enormous amounts of documents has become essential for enterprises in the modern world. Due to the continuous influx of information that all enterprises deal with, manually classifying documents is no longer a viable option. Document classification models can automate the procedure and help organizations save time and resources. […]