AWS Machine Learning Blog

Category: Database

Event-based fraud detection with direct customer calls using Amazon Connect

Several recent surveys show that more than 80% of consumers prefer spending with a credit card over cash. Thanks to advances in AI and machine learning (ML), credit card fraud can be detected quickly, which makes credit cards one of the safest and easiest payment methods to use. The challenge with cards, however, is that […]

Read More

Build a cognitive search and a health knowledge graph using AWS AI services

Medical data is highly contextual and heavily multi-modal, in which each data silo is treated separately. To bridge different data, a knowledge graph-based approach integrates data across domains and helps represent the complex representation of scientific knowledge more naturally. For example, three components of major electronic health records (EHR) are diagnosis codes, primary notes, and […]

Read More

Intelligent governance of document processing pipelines for regulated industries

Processing large documents like PDFs and static images is a cornerstone of today’s highly regulated industries. From healthcare information like doctor-patient visits and bills of health, to financial documents like loan applications, tax filings, research reports, and regulatory filings, these documents are integral to how these industries conduct business. The mechanisms by which these documents […]

Read More
The following is the architecture diagram for integrating online ML inference in a telemedicine contact flow via Amazon Connect.

Applying voice classification in an Amazon Connect telemedicine contact flow

Given the rising demand for fast and effective COVID-19 detection, customers are exploring the usage of respiratory sound data, like coughing, breathing, and counting, to automatically diagnose COVID-19 based on machine learning (ML) models. University of Cambridge researchers built a COVID-19 sound application and demonstrated that a simple binary ML classifier can classify healthy and […]

Read More

Saving time with personalized videos using AWS machine learning

CLIPr aspires to help save 1 billion hours of people’s time. We organize video into a first-class, searchable data source that unlocks the content most relevant to your interests using AWS machine learning (ML) services. CLIPr simplifies the extraction of information in videos, saving you hours by eliminating the need to skim through them manually […]

Read More

Analyzing data stored in Amazon DocumentDB (with MongoDB compatibility) using Amazon Sagemaker

One of the challenges in data science is getting access to operational or real-time data, which is often stored in operational database systems. Being able to connect data science tools to operational data easily and efficiently unleashes enormous potential for gaining insights from real-time data. In this post, we explore using Amazon SageMaker to analyze […]

Read More

Incorporating your enterprise knowledge graph into Amazon Kendra

For many organizations, consolidating information assets and making them available to employees when needed remains a challenge. Commonly used technology like spreadsheets, relational databases, and NoSQL databases exacerbate this issue by creating more and more unconnected, unstructured data. Knowledge graphs can provide easier access and understanding to this data by organizing this data and capturing […]

Read More

Preventing customer churn by optimizing incentive programs using stochastic programming

In recent years, businesses are increasingly looking for ways to integrate the power of machine learning (ML) into business decision-making. This post demonstrates the use case of creating an optimal incentive program to offer customers identified as being at risk of leaving for a competitor, or churning. It extends a popular ML use case, predicting […]

Read More

Accessing data sources from Amazon SageMaker R kernels

Amazon SageMaker notebooks now support R out-of-the-box, without needing you to manually install R kernels on the instances. Also, the notebooks come pre-installed with the reticulate library, which offers an R interface for the Amazon SageMaker Python SDK and enables you to invoke Python modules from within an R script. You can easily run machine […]

Read More

Accelerating innovation: How serverless machine learning on AWS powers F1 Insights

FORMULA 1 (F1) turns 70 years old in 2020 and is one of the few sports that combines real-time skill with engineering and technical prowess. Technology has always played a central role in F1; where the evolution of the rules and tools is built into the DNA of F1. This keeps fans engaged and drivers […]

Read More