AWS Machine Learning Blog

Category: Artificial Intelligence

Heat Map Visualization

Geospatial generative AI with Amazon Bedrock and Amazon Location Service

Today, geospatial workflows typically consist of loading data, transforming it, and then producing visual insights like maps, text, or charts. Generative AI can automate these tasks through autonomous agents. In this post, we discuss how to use foundation models from Amazon Bedrock to power agents to complete geospatial tasks. These agents can perform various tasks […]

How Amazon Music uses SageMaker with NVIDIA to optimize ML training and inference performance and cost

In the dynamic world of streaming on Amazon Music, every search for a song, podcast, or playlist holds a story, a mood, or a flood of emotions waiting to be unveiled. These searches serve as a gateway to new discoveries, cherished experiences, and lasting memories. The search bar is not just about finding a song; […]

Machine Learning with MATLAB and Amazon SageMaker

This post is written in collaboration with Brad Duncan, Rachel Johnson and Richard Alcock from MathWorks. MATLAB  is a popular programming tool for a wide range of applications, such as data processing, parallel computing, automation, simulation, machine learning, and artificial intelligence. It’s heavily used in many industries such as automotive, aerospace, communication, and manufacturing. In […]

Text embedding and sentence similarity retrieval at scale with Amazon SageMaker JumpStart

In this post, we demonstrate how to use the SageMaker Python SDK for text embedding and sentence similarity. Sentence similarity involves assessing the likeness between two pieces of text after they are converted into embeddings by the LLM, which is a foundation step for applications like Retrieval Augmented Generation (RAG).

Layout visualization with Amazon Textract Textractor

Amazon Textract’s new Layout feature introduces efficiencies in general purpose and generative AI document processing tasks

Amazon Textract is a machine learning (ML) service that automatically extracts text, handwriting, and data from any document or image. AnalyzeDocument Layout is a new feature that allows customers to automatically extract layout elements such as paragraphs, titles, subtitles, headers, footers, and more from documents. Layout extends Amazon Textract’s word and line detection by automatically […]

Use Amazon SageMaker Studio to build a RAG question answering solution with Llama 2, LangChain, and Pinecone for fast experimentation

Retrieval Augmented Generation (RAG) allows you to provide a large language model (LLM) with access to data from external knowledge sources such as repositories, databases, and APIs without the need to fine-tune it. When using generative AI for question answering, RAG enables LLMs to answer questions with the most relevant, up-to-date information and optionally cite […]

KT’s journey to reduce training time for a vision transformers model using Amazon SageMaker

KT Corporation is one of the largest telecommunications providers in South Korea, offering a wide range of services including fixed-line telephone, mobile communication, and internet, and AI services. KT’s AI Food Tag is an AI-based dietary management solution that identifies the type and nutritional content of food in photos using a computer vision model. This […]


Moderate your Amazon IVS live stream using Amazon Rekognition

Amazon Interactive Video Service (Amazon IVS) is a managed live streaming solution that is designed to provide a quick and straightforward setup to let you build interactive video experiences and handles interactive video content from ingestion to delivery. With the increased usage of live streaming, the need for effective content moderation becomes even more crucial. […]

Retrieval-Augmented Generation with LangChain, Amazon SageMaker JumpStart, and MongoDB Atlas Semantic Search

Generative AI models have the potential to revolutionize enterprise operations, but businesses must carefully consider how to harness their power while overcoming challenges such as safeguarding data and ensuring the quality of AI-generated content. The Retrieval-Augmented Generation (RAG) framework augments prompts with external data from multiple sources, such as document repositories, databases, or APIs, to […]

Solution architecture diagram

Build a foundation model (FM) powered customer service bot with agents for Amazon Bedrock

From enhancing the conversational experience to agent assistance, there are plenty of ways that generative artificial intelligence (AI) and foundation models (FMs) can help deliver faster, better support. With the increasing availability and diversity of FMs, it’s difficult to experiment and keep up-to-date with the latest model versions. Amazon Bedrock is a fully managed service […]