AWS Machine Learning Blog
Category: Artificial Intelligence
Explore data with ease: Use SQL and Text-to-SQL in Amazon SageMaker Studio JupyterLab notebooks
Amazon SageMaker Studio provides a fully managed solution for data scientists to interactively build, train, and deploy machine learning (ML) models. In the process of working on their ML tasks, data scientists typically start their workflow by discovering relevant data sources and connecting to them. They then use SQL to explore, analyze, visualize, and integrate […]
Distributed training and efficient scaling with the Amazon SageMaker Model Parallel and Data Parallel Libraries
In this post, we explore the performance benefits of Amazon SageMaker (including SMP and SMDDP), and how you can use the library to train large models efficiently on SageMaker. We demonstrate the performance of SageMaker with benchmarks on ml.p4d.24xlarge clusters up to 128 instances, and FSDP mixed precision with bfloat16 for the Llama 2 model.
Manage your Amazon Lex bot via AWS CloudFormation templates
Amazon Lex is a fully managed artificial intelligence (AI) service with advanced natural language models to design, build, test, and deploy conversational interfaces in applications. It employs advanced deep learning technologies to understand user input, enabling developers to create chatbots, virtual assistants, and other applications that can interact with users in natural language. Managing your […]
A secure approach to generative AI with AWS
Generative artificial intelligence (AI) is transforming the customer experience in industries across the globe. Customers are building generative AI applications using large language models (LLMs) and other foundation models (FMs), which enhance customer experiences, transform operations, improve employee productivity, and create new revenue channels. The biggest concern we hear from customers as they explore the advantages of generative AI is how to protect their highly sensitive data and investments. At AWS, our top priority is safeguarding the security and confidentiality of our customers’ workloads. We think about security across the three layers of our generative AI stack …
Cost-effective document classification using the Amazon Titan Multimodal Embeddings Model
Organizations across industries want to categorize and extract insights from high volumes of documents of different formats. Manually processing these documents to classify and extract information remains expensive, error prone, and difficult to scale. Advances in generative artificial intelligence (AI) have given rise to intelligent document processing (IDP) solutions that can automate the document classification, […]
AWS at NVIDIA GTC 2024: Accelerate innovation with generative AI on AWS
AWS was delighted to present to and connect with over 18,000 in-person and 267,000 virtual attendees at NVIDIA GTC, a global artificial intelligence (AI) conference that took place March 2024 in San Jose, California, returning to a hybrid, in-person experience for the first time since 2019. AWS has had a long-standing collaboration with NVIDIA for […]
Build an active learning pipeline for automatic annotation of images with AWS services
This blog post is co-written with Caroline Chung from Veoneer. Veoneer is a global automotive electronics company and a world leader in automotive electronic safety systems. They offer best-in-class restraint control systems and have delivered over 1 billion electronic control units and crash sensors to car manufacturers globally. The company continues to build on a […]
Amazon Bedrock Knowledge Bases now supports custom prompts for the RetrieveAndGenerate API and configuration of the maximum number of retrieved results
With Amazon Bedrock Knowledge Bases, you can securely connect foundation models (FMs) in Amazon Bedrock to your company data for Retrieval Augmented Generation (RAG). Access to additional data helps the model generate more relevant, context-specific, and accurate responses without retraining the FMs. In this post, we discuss two new features of Amazon Bedrock Knowledge Bases […]
Amazon Bedrock Knowledge Bases now supports metadata filtering to improve retrieval accuracy
At AWS re:Invent 2023, we announced the general availability of Amazon Bedrock Knowledge Bases. With Amazon Bedrock Knowledge Bases, you can securely connect foundation models (FMs) in Amazon Bedrock to your company data using a fully managed Retrieval Augmented Generation (RAG) model. For RAG-based applications, the accuracy of the generated responses from FMs depend on […]
Build knowledge-powered conversational applications using LlamaIndex and Llama 2-Chat
Unlocking accurate and insightful answers from vast amounts of text is an exciting capability enabled by large language models (LLMs). When building LLM applications, it is often necessary to connect and query external data sources to provide relevant context to the model. One popular approach is using Retrieval Augmented Generation (RAG) to create Q&A systems […]