Artificial Intelligence

Category: Amazon SageMaker AI

Building enterprise-scale RAG applications with Amazon S3 Vectors and DeepSeek R1 on Amazon SageMaker AI

Organizations are adopting large language models (LLMs), such as DeepSeek R1, to transform business processes, enhance customer experiences, and drive innovation at unprecedented speed. However, standalone LLMs have key limitations such as hallucinations, outdated knowledge, and no access to proprietary data. Retrieval Augmented Generation (RAG) addresses these gaps by combining semantic search with generative AI, […]

How Rapid7 automates vulnerability risk scores with ML pipelines using Amazon SageMaker AI

In this post, we share how Rapid7 implemented end-to-end automation for the training, validation, and deployment of ML models that predict CVSS vectors. Rapid7 customers have the information they need to accurately understand their risk and prioritize remediation measures.

Advanced fine-tuning methods on Amazon SageMaker AI

When fine-tuning ML models on AWS, you can choose the right tool for your specific needs. AWS provides a comprehensive suite of tools for data scientists, ML engineers, and business users to achieve their ML goals. AWS has built solutions to support various levels of ML sophistication, from simple SageMaker training jobs for FM fine-tuning to the power of SageMaker HyperPod for cutting-edge research. We invite you to explore these options, starting with what suits your current needs, and evolve your approach as those needs change.

Implement user-level access control for multi-tenant ML platforms on Amazon SageMaker AI

In this post, we discuss permission management strategies, focusing on attribute-based access control (ABAC) patterns that enable granular user access control while minimizing the proliferation of AWS Identity and Access Management (IAM) roles. We also share proven best practices that help organizations maintain security and compliance without sacrificing operational efficiency in their ML workflows.

New capabilities in Amazon SageMaker AI continue to transform how organizations develop AI models

In this post, we share some of the new innovations in SageMaker AI that can accelerate how you build and train AI models. These innovations include new observability capabilities in SageMaker HyperPod, the ability to deploy JumpStart models on HyperPod, remote connections to SageMaker AI from local development environments, and fully managed MLflow 3.0.

Accelerating generative AI development with fully managed MLflow 3.0 on Amazon SageMaker AI

In this post, we explore how Amazon SageMaker now offers fully managed support for MLflow 3.0, streamlining AI experimentation and accelerating your generative AI journey from idea to production. This release transforms managed MLflow from experiment tracking to providing end-to-end observability, reducing time-to-market for generative AI development.

Use K8sGPT and Amazon Bedrock for simplified Kubernetes cluster maintenance

This post demonstrates the best practices to run K8sGPT in AWS with Amazon Bedrock in two modes: K8sGPT CLI and K8sGPT Operator. It showcases how the solution can help SREs simplify Kubernetes cluster management through continuous monitoring and operational intelligence.

Choosing the right approach for generative AI-powered structured data retrieval

In this post, we explore five different patterns for implementing LLM-powered structured data query capabilities in AWS, including direct conversational interfaces, BI tool enhancements, and custom text-to-SQL solutions.

Build and deploy AI inference workflows with new enhancements to the Amazon SageMaker Python SDK

In this post, we provide an overview of the user experience, detailing how to set up and deploy these workflows with multiple models using the SageMaker Python SDK. We walk through examples of building complex inference workflows, deploying them to SageMaker endpoints, and invoking them for real-time inference.