AWS Machine Learning Blog

Category: Amazon SageMaker

Join AWS and NVIDIA at GTC, October 5–9

Starting Monday, October 5, 2020, the NVIDIA GPU Technology Conference (GTC) is offering online sessions for you to learn AWS best practices to accomplish your machine learning (ML), virtual workstations, high performance computing (HPC), and internet of things (IoT) goals faster and more easily. Amazon Elastic Compute Cloud (Amazon EC2) instances powered by NVIDIA GPUs […]

Onboarding Amazon SageMaker Studio with AWS SSO and Okta Universal Directory

This blog was reviewed and updated June, 2022 to address latest changes to steps and User Interface on Studio and Okta. In 2019, AWS announced Amazon SageMaker Studio, a unified integrated development environment (IDE) for machine learning (ML) development. You can write code, track experiments, visualize data, and perform debugging and monitoring within a single, […]

Running on-demand, serverless Apache Spark data processing jobs using Amazon SageMaker managed Spark containers and the Amazon SageMaker SDK

July 2023: This post was reviewed for accuracy. Apache Spark is a unified analytics engine for large scale, distributed data processing. Typically, businesses with Spark-based workloads on AWS use their own stack built on top of Amazon Elastic Compute Cloud (Amazon EC2), or Amazon EMR to run and scale Apache Spark, Hive, Presto, and other […]

Moving from notebooks to automated ML pipelines using Amazon SageMaker and AWS Glue

A typical machine learning (ML) workflow involves processes such as data extraction, data preprocessing, feature engineering, model training and evaluation, and model deployment. As data changes over time, when you deploy models to production, you want your model to learn continually from the stream of data. This means supporting the model’s ability to autonomously learn […]

Data visualization and anomaly detection using Amazon Athena and Pandas from Amazon SageMaker

Many organizations use Amazon SageMaker for their machine learning (ML) requirements and source data from a data lake stored on Amazon Simple Storage Service (Amazon S3). The petabyte scale source data on Amazon S3 may not always be clean because data lakes ingest data from several source systems, such as like flat files, external feeds, […]

Football tracking in the NFL with Amazon SageMaker

With the 2020 football season kicking off, Amazon Web Services (AWS) is continuing its work with the National Football League (NFL) on several ongoing game-changing initiatives. Specifically, the NFL and AWS are teaming up to develop state-of-the-art cloud technology using machine learning (ML) aimed at aiding the officiating process through real-time football detection. As a […]

Preventing customer churn by optimizing incentive programs using stochastic programming

In recent years, businesses are increasingly looking for ways to integrate the power of machine learning (ML) into business decision-making. This post demonstrates the use case of creating an optimal incentive program to offer customers identified as being at risk of leaving for a competitor, or churning. It extends a popular ML use case, predicting […]

Streamline modeling with Amazon SageMaker Studio and the Amazon Experiments SDK

The modeling phase is a highly iterative process in machine learning (ML) projects, where data scientists experiment with various data preprocessing and feature engineering strategies, intertwined with different model architectures, which are then trained with disparate sets of hyperparameter values. This highly iterative process with many moving parts can, over time, manifest into a tremendous […]

Gaining insights into winning football strategies using machine learning

University of Illinois, Urbana Champaign (UIUC) has partnered with the Amazon Machine Learning Solutions Lab to help UIUC football coaches prepare for games more efficiently and improve their odds of winning. Previously, coaches prepared for games by creating a game planning sheet that only featured types of plays for a certain down and distance, and […]

Activity detection on a live video stream with Amazon SageMaker

Live video streams are continuously generated across industries including media and entertainment, retail, and many more. Live events like sports, music, news, and other special events are broadcast for viewers on TV and other online streaming platforms. AWS customers increasingly rely on machine learning (ML) to generate actionable insights in real time and deliver an […]