Amazon CodeGuru Profiler FAQs
General
Open allQ: What is Amazon CodeGuru?
Q: What can I do with Amazon CodeGuru?
Q: How do I get started with Amazon CodeGuru?
Amazon CodeGuru is now generally available. You can start right now in the Amazon CodeGuru console.
To get started with Amazon CodeGuru Reviewer, log in to the Amazon CodeGuru Reviewer console where you can associate an existing code repository on GitHub, GitHub Enterprise, Bitbucket or AWS CodeCommit. After a one-time setup, Amazon CodeGuru Reviewer begins analyzing code and providing code improvement recommendations directly within the pull request or code repository.
You can also start profiling your applications in minutes. To get started with Amazon CodeGuru Profiler, log in to the Amazon CodeGuru Profiler console where you can configure a profiling group for your application. Start your application with the profiling agent on the command line or follow the steps to use one of the described custom methods. You can let Amazon CodeGuru Profiler run continuously so it can proactively catch performance issues in your live applications.
Q: In which AWS Regions is Amazon CodeGuru available?
Amazon CodeGuru Reviewer
Open allQ: What is Amazon CodeGuru Reviewer?
Q: What programming languages and source code repositories are supported?
Q: What type of issues are detected by Amazon CodeGuru Reviewer?
Q: How do I get started with Amazon CodeGuru Reviewer?
Q: Does Amazon CodeGuru Reviewer access my code?
Q: Does Amazon CodeGuru Reviewer persist a copy of my code?
Q: How is Amazon CodeGuru Reviewer trained to provide intelligent recommendations?
Amazon CodeGuru Reviewer is trained using rule mining and supervised machine learning models that use a combination of logistic regression and neural networks.
For example, during training for deviation from AWS best practices, Amazon CodeGuru Reviewer mines Amazon code bases using search techniques and locality sensitive models for pull requests that include AWS API calls. It looks at code changes intended to improve the quality of the code, and cross-references them against documentation data. The result is the creation of a new set of rules that Reviewer recommends to you as best practices when it reviews your code.
During training for resource and sensitive data leaks, it does a full code analysis for all code paths that use the resource or sensitive data, creates a feature set representing those, and then uses those as inputs for logistic regression models and convolutional neural networks (CNNs).
For code inconsistencies, the models are trained during either the full or incremental code review. After a customer triggers a review, these models utilize a number of data mining and machine learning techniques to build the dataset, highlight the reason for the code patterns, and make recommendations customized to the customer’s code.
For both rule-based and machine learning-based models, Amazon CodeGuru Reviewer uses the feedback you provide as labels and iteratively improves the quality of code detectors.