AWS Big Data Blog
Category: Amazon SageMaker
Integrate scientific data management and analytics with the next generation of Amazon SageMaker, Part 1
In this blog post, AWS introduces a solution to a common challenge in scientific research – the inefficient management of fragmented scientific data. The post demonstrates how the next generation of Amazon SageMaker, through its Unified Studio and Catalog features, helps scientists streamline their workflow by integrating data management and analytics capabilities.
Develop and deploy a generative AI application using Amazon SageMaker Unified Studio
In this post, we demonstrate how to use Amazon Bedrock Flows in SageMaker Unified Studio to build a sophisticated generative AI application for financial analysis and investment decision-making.
Enhance governance with asset type usage policies in Amazon SageMaker
In this post, we introduce authorization policies for custom asset types—a new governance capability in Amazon SageMaker that gives organizations fine-grained control over who can create and manage assets using specific templates. This feature enhances data governance by allowing teams to enforce usage policies that align with business and security requirements across the organization.
Accelerate your analytics with Amazon S3 Tables and Amazon SageMaker Lakehouse
Amazon SageMaker Lakehouse is a unified, open, and secure data lakehouse that now seamlessly integrates with Amazon S3 Tables, the first cloud object store with built-in Apache Iceberg support. In this post, we guide you how to use various analytics services using the integration of SageMaker Lakehouse with S3 Tables.
Streamline data discovery with precise technical identifier search in Amazon SageMaker Unified Studio
We’re excited to introduce a new enhancement to the search experience in Amazon SageMaker Catalog, part of the next generation of Amazon SageMaker—exact match search using technical identifiers. In this post, we demonstrate how to streamline data discovery with precise technical identifier search in Amazon SageMaker Unified Studio.
Connect, share, and query where your data sits using Amazon SageMaker Unified Studio
In this blog post, we will demonstrate how business units can use Amazon SageMaker Unified Studio to discover, subscribe to, and analyze these distributed data assets. Through this unified query capability, you can create comprehensive insights into customer transaction patterns and purchase behavior for active products without the traditional barriers of data silos or the need to copy data between systems.
Accelerate analytics and AI innovation with the next generation of Amazon SageMaker
We are excited to announce the general availability of SageMaker Unified Studio. In this post, we explore the benefits of SageMaker Unified Studio and how to get started.
Foundational blocks of Amazon SageMaker Unified Studio: An admin’s guide to implement unified access to all your data, analytics, and AI
In this post, we discuss the foundational building blocks of SageMaker Unified Studio and how, by abstracting complex technical implementations behind user-friendly interfaces, organizations can maintain standardized governance while enabling efficient resource management across business units. This approach provides consistency in infrastructure deployment while providing the flexibility needed for diverse business requirements.
Use DeepSeek with Amazon OpenSearch Service vector database and Amazon SageMaker
OpenSearch Service provides rich capabilities for RAG use cases, as well as vector embedding-powered semantic search. You can use the flexible connector framework and search flow pipelines in OpenSearch to connect to models hosted by DeepSeek, Cohere, and OpenAI, as well as models hosted on Amazon Bedrock and SageMaker. In this post, we build a connection to DeepSeek’s text generation model, supporting a RAG workflow to generate text responses to user queries.
How EUROGATE established a data mesh architecture using Amazon DataZone
In this post, we show you how EUROGATE uses AWS services, including Amazon DataZone, to make data discoverable by data consumers across different business units so that they can innovate faster. Two use cases illustrate how this can be applied for business intelligence (BI) and data science applications, using AWS services such as Amazon Redshift and Amazon SageMaker.









