AWS Machine Learning Blog
Category: AWS Step Functions
Automate Amazon Rekognition Custom Labels model training and deployment using AWS Step Functions
With Amazon Rekognition Custom Labels, you can have Amazon Rekognition train a custom model for object detection or image classification specific to your business needs. For example, Rekognition Custom Labels can find your logo in social media posts, identify your products on store shelves, classify machine parts in an assembly line, distinguish healthy and infected […]
Bring legacy machine learning code into Amazon SageMaker using AWS Step Functions
Tens of thousands of AWS customers use AWS machine learning (ML) services to accelerate their ML development with fully managed infrastructure and tools. For customers who have been developing ML models on premises, such as their local desktop, they want to migrate their legacy ML models to the AWS Cloud to fully take advantage of […]
Real-time fraud detection using AWS serverless and machine learning services
Online fraud has a widespread impact on businesses and requires an effective end-to-end strategy to detect and prevent new account fraud and account takeovers, and stop suspicious payment transactions. In this post, we show a serverless approach to detect online transaction fraud in near-real time. We show how you can apply this approach to various data streaming and event-driven architectures, depending on the desired outcome and actions to take to prevent fraud (such as alert the user about the fraud or flag the transaction for additional review).
How Marubeni is optimizing market decisions using AWS machine learning and analytics
This post is co-authored with Hernan Figueroa, Sr. Manager Data Science at Marubeni Power International. Marubeni Power International Inc (MPII) owns and invests in power business platforms in the Americas. An important vertical for MPII is asset management for renewable energy and energy storage assets, which are critical to reduce the carbon intensity of our […]
How to redact PII data in conversation transcripts
Customer service interactions often contain personally identifiable information (PII) such as names, phone numbers, and dates of birth. As organizations incorporate machine learning (ML) and analytics into their applications, using this data can provide insights on how to create more seamless customer experiences. However, the presence of PII information often restricts the use of this […]
Automated exploratory data analysis and model operationalization framework with a human in the loop
Identifying, collecting, and transforming data is the foundation for machine learning (ML). According to a Forbes survey, there is widespread consensus among ML practitioners that data preparation accounts for approximately 80% of the time spent in developing a viable ML model. In addition, many of our customers face several challenges during the model operationalization phase […]
Automate your time series forecasting in Snowflake using Amazon Forecast
This post is a joint collaboration with Andries Engelbrecht and James Sun of Snowflake, Inc. The cloud computing revolution has enabled businesses to capture and retain corporate and organizational data without capacity planning or data retention constraints. Now, with diverse and vast reserves of longitudinal data, companies are increasingly able to find novel and impactful […]
Integrate Amazon SageMaker Data Wrangler with MLOps workflows
As enterprises move from running ad hoc machine learning (ML) models to using AI/ML to transform their business at scale, the adoption of ML Operations (MLOps) becomes inevitable. As shown in the following figure, the ML lifecycle begins with framing a business problem as an ML use case followed by a series of phases, including […]
How Cepsa used Amazon SageMaker and AWS Step Functions to industrialize their ML projects and operate their models at scale
This blog post is co-authored by Guillermo Ribeiro, Sr. Data Scientist at Cepsa. Machine learning (ML) has rapidly evolved from being a fashionable trend emerging from academic environments and innovation departments to becoming a key means to deliver value across businesses in every industry. This transition from experiments in laboratories to solving real-world problems in […]
Moderate, classify, and process documents using Amazon Rekognition and Amazon Textract
Many companies are overwhelmed by the abundant volume of documents they have to process, organize, and classify to serve their customers better. Examples of such can be loan applications, tax filing, and billing. Such documents are more commonly received in image formats and are mostly multi-paged and in low-quality format. To be more competitive and […]