AWS Machine Learning Blog

Category: Best Practices

ml-17088-solution-architecture

Set up a custom plugin on Amazon Q Business and authenticate with Amazon Cognito to interact with backend systems

In this post, we demonstrate how to build a custom plugin with Amazon Q Business for backend integration. This plugin can integrate existing systems, including third-party systems, with little to no development in just weeks and automate critical workflows. Additionally, we show how to safeguard the solution using Amazon Cognito and AWS IAM Identity Center, maintaining the safety and integrity of sensitive data and workflows.

Build a financial research assistant using Amazon Q Business and Amazon QuickSight for generative AI–powered insights

In this post, we show you how Amazon Q Business can help augment your generative AI needs in all the abovementioned use cases and more by answering questions, providing summaries, generating content, and securely completing tasks based on data and information in your enterprise systems.

Best practices for Meta Llama 3.2 multimodal fine-tuning on Amazon Bedrock

In this post, we share comprehensive best practices and scientific insights for fine-tuning Meta Llama 3.2 multimodal models on Amazon Bedrock. By following these guidelines, you can fine-tune smaller, more cost-effective models to achieve performance that rivals or even surpasses much larger models—potentially reducing both inference costs and latency, while maintaining high accuracy for your specific use case.

Insights in implementing production-ready solutions with generative AI

As generative AI revolutionizes industries, organizations are eager to harness its potential. However, the journey from production-ready solutions to full-scale implementation can present distinct operational and technical considerations. This post explores key insights and lessons learned from AWS customers in Europe, Middle East, and Africa (EMEA) who have successfully navigated this transition, providing a roadmap for others looking to follow suit.

How Salesforce achieves high-performance model deployment with Amazon SageMaker AI

This post is a joint collaboration between Salesforce and AWS and is being cross-published on both the Salesforce Engineering Blog and the AWS Machine Learning Blog. The Salesforce AI Model Serving team is working to push the boundaries of natural language processing and AI capabilities for enterprise applications. Their key focus areas include optimizing large […]

Solution Overview

Clario enhances the quality of the clinical trial documentation process with Amazon Bedrock

The collaboration between Clario and AWS demonstrated the potential of AWS AI and machine learning (AI/ML) services and generative AI models, such as Anthropic’s Claude, to streamline document generation processes in the life sciences industry and, specifically, for complicated clinical trial processes.

Multi-LLM routing strategies for generative AI applications on AWS

Organizations are increasingly using multiple large language models (LLMs) when building generative AI applications. Although an individual LLM can be highly capable, it might not optimally address a wide range of use cases or meet diverse performance requirements. The multi-LLM approach enables organizations to effectively choose the right model for each task, adapt to different […]