Artificial Intelligence

Category: Best Practices

Evaluating AI agents: Real-world lessons from building agentic systems at Amazon

In this post, we present a comprehensive evaluation framework for Amazon agentic AI systems that addresses the complexity of agentic AI applications at Amazon through two core components: a generic evaluation workflow that standardizes assessment procedures across diverse agent implementations, and an agent evaluation library that provides systematic measurements and metrics in Amazon Bedrock AgentCore Evaluations, along with Amazon use case-specific evaluation approaches and metrics. 

AI meets HR: Transforming talent acquisition with Amazon Bedrock

In this post, we show how to create an AI-powered recruitment system using Amazon Bedrock, Amazon Bedrock Knowledge Bases, AWS Lambda, and other AWS services to enhance job description creation, candidate communication, and interview preparation while maintaining human oversight.

Scale LLM fine-tuning with Hugging Face and Amazon SageMaker AI

In this post, we show how this integrated approach transforms enterprise LLM fine-tuning from a complex, resource-intensive challenge into a streamlined, scalable solution for achieving better model performance in domain-specific applications.

Evaluate generative AI models with an Amazon Nova rubric-based LLM judge on Amazon SageMaker AI (Part 2)

In this post, we explore the Amazon Nova rubric-based judge feature: what a rubric-based judge is, how the judge is trained, what metrics to consider, and how to calibrate the judge. We chare notebook code of the Amazon Nova rubric-based LLM-as-a-judge methodology to evaluate and compare the outputs of two different LLMs using SageMaker training jobs.

AI agents in enterprises: Best practices with Amazon Bedrock AgentCore

This post explores nine essential best practices for building enterprise AI agents using Amazon Bedrock AgentCore. Amazon Bedrock AgentCore is an agentic platform that provides the services you need to create, deploy, and manage AI agents at scale. In this post, we cover everything from initial scoping to organizational scaling, with practical guidance that you can apply immediately.

Agentic AI for healthcare data analysis with Amazon SageMaker Data Agent

On November 21, 2025, Amazon SageMaker introduced a built-in data agent within Amazon SageMaker Unified Studio that transforms large-scale data analysis. In this post, we demonstrate, through a detailed case study of an epidemiologist conducting clinical cohort analysis, how SageMaker Data Agent can help reduce weeks of data preparation into days, and days of analysis development into hours—ultimately accelerating the path from clinical questions to research conclusions.

Advanced fine-tuning techniques for multi-agent orchestration: Patterns from Amazon at scale

In this post, we show you how fine-tuning enabled a 33% reduction in dangerous medication errors (Amazon Pharmacy), engineering 80% human effort reduction (Amazon Global Engineering Services), and content quality assessments improving 77% to 96% accuracy (Amazon A+). This post details the techniques behind these outcomes: from foundational methods like Supervised Fine-Tuning (SFT) (instruction tuning), and Proximal Policy Optimization (PPO), to Direct Preference Optimization (DPO) for human alignment, to cutting-edge reasoning optimizations such as Grouped-based Reinforcement Learning from Policy Optimization (GRPO), Direct Advantage Policy Optimization (DAPO), and Group Sequence Policy Optimization (GSPO) purpose-built for agentic systems.

Deploy AI agents on Amazon Bedrock AgentCore using GitHub Actions

In this post, we demonstrate how to use a GitHub Actions workflow to automate the deployment of AI agents on AgentCore Runtime. This approach delivers a scalable solution with enterprise-level security controls, providing complete continuous integration and delivery (CI/CD) automation.

How the Amazon AMET Payments team accelerates test case generation with Strands Agents

In this post, we explain how we overcame the limitations of single-agent AI systems through a human-centric approach, implemented structured outputs to significantly reduce hallucinations and built a scalable solution now positioned for expansion across the AMET QA team and later across other QA teams in International Emerging Stores and Payments (IESP) Org.