亚马逊AWS官方博客

Category: Artificial Intelligence

Amazon SageMaker 继续引领 Machine Learning,并宣布使用 GPU 实例可将价格最高降低 18%

自 2006 年以来,Amazon Web Services (AWS) 一直在帮助数百万客户构建和管理他们的 IT 工作负载。从初创公司到大型企业,再到公共部门,各种规模的组织都在使用我们的云计算服务,它们实现了前所未有的安全性、弹性和可扩展性水平。每天,他们都能够以比以往更少的时间和更低的成本进行试验、创新和生产部署。因此,他们可以探索、抓住商业机会,并将其转化为工业级产品和服务。

Read More

通过 Amazon Personalize 扩展科学产品组合并适应不断变化的世界

赛默飞世尔(Thermo Fisher)一直努力帮助世界各地的科学家解决我们面临的一些最大挑战。借助 Amazon Personalize,我们极大地提高了我们了解客户工作的能力,并通过多种渠道为他们提供个性化体验。使用 Amazon Personalize 使我们能够专注于解决难题,而不是管理 ML 基础架构。

Read More

使用 Amazon SageMaker 在生产环境中对机器学习模型 A/B 测试

Amazon SageMaker可帮助用户在端点之上运行多个生产变体,从而轻松对生产环境中的ML模型进行A/B测试。大家可以使用SageMaker提供的功能配合不同训练数据集、超参数、算法以及ML框架测试由此训练出的模型,了解它们在不同实例类型上的执行性能,并将各项因素整合起来形成不同搭配。我们还可以在端点上的各变体之间进行流量分配,Amazon SageMaker会根据指定的分发方式将推理流量拆分并分发至各个变体。

Read More

在基于 AWS Inferentia 的 Inf1 实例上部署 TensorFlow OpenPose,借此显著提高资源性价比

在本文中,我们分步完成了对OpenPose TensorFlow版开源模型的编译,更新自定义端到端图像处理管道,并体验了能够在EC2 Infi1实例之上对ML推理时间做出分析及深度优化的工具。在调优之后,Neuron编译的TensorFlow模型较现有费率最低的GPU实例实现72%的成本节约,且性能仍旧保持一致。本文中阐述的各项操作步骤,也适用于其他ML模型类型与框架。关于更多详细信息,请参阅AWS Neuron SDK GitHub repo。

Read More

使用 Amazon Personalize 与 Braze 个性化推荐功能优化营销活动参与度

时至今日,营销人员正通过各类消息力争吸引到客户的注意力,这也意味着大家必须能够在正确的时间、以正确的渠道将正确的消息传递给明确定位的正确用户。Braze为前三项难题提供解决方案,而大家也可以将Braze Connected Content与Amazon Personalize集成起来以攻克最后一个挑战,真正整理出能够反映每一位客户当前偏好、具有高度个性化的产品与内容建议。

Read More

通过个性化在线体育内容提升用户参与度

Amazon Personalize为我们开启了新世界的大门,我们也对首次迈入ML领域感到无比激动。我们发现,将经过训练的模型纳入我们的工作流程其实非常简单易行。与使用Amazon Personalize相比,更耗费时间的反而是选择正确的KPI并捕捉必要数据,借此证明本轮试验的实际有效性。

Read More

开发应用程序迁移方法以使用 Amazon Redshift 使您的数据仓库现代化

本文展示一款简单的应用程序,可供制药企业、医疗保健专业人士以及消费者通过药监局及国家卫生研究院等权威来源处查找有用信息。使用这套架构及相关代码库,您可以将这套解决方案整合至关于不良事件分析及报告的其他下游应用程序当中。我们希望本文能够帮助大家接触ML技术、提高ML采用率,同时改善患者的预后与护理质量。

Read More

使用 Amazon Comprehend Medical 以自然语言为基础查询药物不良反应与召回事件

本文展示一款简单的应用程序,可供制药企业、医疗保健专业人士以及消费者通过药监局及国家卫生研究院等权威来源处查找有用信息。使用这套架构及相关代码库,您可以将这套解决方案整合至关于不良事件分析及报告的其他下游应用程序当中。我们希望本文能够帮助大家接触ML技术、提高ML采用率,同时改善患者的预后与护理质量。

Read More