AWS Big Data Blog

Category: AWS Big Data

Integrate custom applications with AWS Lake Formation – Part 1

In this two-part series, we show how to integrate custom applications or data processing engines with Lake Formation using the third-party services integration feature. In this post, we dive deep into the required Lake Formation and AWS Glue APIs. We walk through the steps to enforce Lake Formation policies within custom data applications. As an example, we present a sample Lake Formation integrated application implemented using AWS Lambda.

Integrate custom applications with AWS Lake Formation – Part 2

In this two-part series, we show how to integrate custom applications or data processing engines with Lake Formation using the third-party services integration feature. In this post, we explore how to deploy a fully functional web client application, built with JavaScript/React through AWS Amplify (Gen 1), that uses the same Lambda function as the backend. The provisioned web application provides a user-friendly and intuitive way to view the Lake Formation policies that have been enforced.

Enrich your AWS Glue Data Catalog with generative AI metadata using Amazon Bedrock

By harnessing the capabilities of generative AI, you can automate the generation of comprehensive metadata descriptions for your data assets based on their documentation, enhancing discoverability, understanding, and the overall data governance within your AWS Cloud environment. This post shows you how to enrich your AWS Glue Data Catalog with dynamic metadata using foundation models (FMs) on Amazon Bedrock and your data documentation.

How FINRA established real-time operational observability for Amazon EMR big data workloads on Amazon EC2 with Prometheus and Grafana

FINRA performs big data processing with large volumes of data and workloads with varying instance sizes and types on Amazon EMR. Amazon EMR is a cloud-based big data environment designed to process large amounts of data using open source tools such as Hadoop, Spark, HBase, Flink, Hudi, and Presto. In this post, we talk about our challenges and show how we built an observability framework to provide operational metrics insights for big data processing workloads on Amazon EMR on Amazon Elastic Compute Cloud (Amazon EC2) clusters.

Streamlining AWS Glue Studio visual jobs: Building an integrated CI/CD pipeline for seamless environment synchronization

As data engineers increasingly rely on the AWS Glue Studio visual editor to create data integration jobs, the need for a streamlined development lifecycle and seamless synchronization between environments has become paramount. Additionally, managing versions of visual directed acyclic graphs (DAGs) is crucial for tracking changes, collaboration, and maintaining consistency across environments. This post introduces an end-to-end solution that addresses these needs by combining the power of the AWS Glue Visual Job API, a custom AWS Glue Resource Sync Utility, and an based continuous integration and continuous deployment (CI/CD) pipeline.

Accelerate SQL code migration from Google BigQuery to Amazon Redshift using BladeBridge

This post explores how you can use BladeBridge, a leading data environment modernization solution, to simplify and accelerate the migration of SQL code from BigQuery to Amazon Redshift. BladeBridge offers a comprehensive suite of tools that automate much of the complex conversion work, allowing organizations to quickly and reliably transition their data analytics capabilities to the scalable Amazon Redshift data warehouse.

Modernize your legacy databases with AWS data lakes, Part 2: Build a data lake using AWS DMS data on Apache Iceberg

This is part two of a three-part series where we show how to build a data lake on AWS using a modern data architecture. This post shows how to load data from a legacy database (SQL Server) into a transactional data lake (Apache Iceberg) using AWS Glue. We show how to build data pipelines using AWS Glue jobs, optimize them for both cost and performance, and implement schema evolution to automate manual tasks. To review the first part of the series, where we load SQL Server data into Amazon Simple Storage Service (Amazon S3) using AWS Database Migration Service (AWS DMS), see Modernize your legacy databases with AWS data lakes, Part 1: Migrate SQL Server using AWS DMS.

Simplify your query performance diagnostics in Amazon Redshift with Query profiler

Amazon Redshift has introduced a new feature called the Query profiler. The Query profiler is a graphical tool that helps users analyze the components and performance of a query. This feature is part of the Amazon Redshift console and provides a visual and graphical representation of the query’s run order, execution plan, and various statistics. The Query profiler makes it easier for users to understand and troubleshoot their queries. In this post, we cover two common use cases for troubleshooting query performance. We show you step-by-step how to analyze and troubleshoot long-running queries using the Query profiler.

Accelerate Amazon Redshift Data Lake queries with AWS Glue Data Catalog Column Statistics

Over the last year, Amazon Redshift added several performance optimizations for data lake queries across multiple areas of query engine such as rewrite, planning, scan execution and consuming AWS Glue Data Catalog column statistics. In this post, we highlight the performance improvements we observed using industry standard TPC-DS benchmarks. Overall execution time of TPC-DS 3 TB benchmark improved by 3x. Some of the queries in our benchmark experienced up to 12x speed up.