AWS Big Data Blog

How I built a data warehouse using Amazon Redshift and AWS services in record time

Over the years, I have developed and created a number of data warehouses from scratch. Recently, I built a data warehouse for the iGaming industry single-handedly. To do it, I used the power and flexibility of Amazon Redshift and the wider AWS data management ecosystem. In this post, I explain how I was able to build a robust and scalable data warehouse without the large team of experts typically needed.

Top 9 Best Practices for High-Performance ETL Processing Using Amazon Redshift

When migrating from a legacy data warehouse to Amazon Redshift, it is tempting to adopt a lift-and-shift approach, but this can result in performance and scale issues long term. This post guides you through the following best practices for ensuring optimal, consistent runtimes for your ETL processes.

Optimize Delivery of Trending, Personalized News Using Amazon Kinesis and Related Services

Gunosy aims to provide people with the content they want without the stress of dealing with a large influx of information. We analyze user attributes, such as gender and age, and past activity logs like click-through rate (CTR). We combine this information with article attributes to provide trending, personalized news articles to users. In this post, I show you how to process user activity logs in real time using Amazon Kinesis Data Firehose, Amazon Kinesis Data Analytics, and related AWS services.

Use Kerberos Authentication to Integrate Amazon EMR with Microsoft Active Directory

This post walks you through the process of using AWS CloudFormation to set up a cross-realm trust and extend authentication from an Active Directory network into an Amazon EMR cluster with Kerberos enabled. By establishing a cross-realm trust, Active Directory users can use their Active Directory credentials to access an Amazon EMR cluster and run jobs as themselves.