Artificial Intelligence

Category: Amazon SageMaker

NVIDIA Nemotron 3 Nano 30B MoE model is now available in Amazon SageMaker JumpStart

Today we’re excited to announce that the NVIDIA Nemotron 3 Nano 30B model with  3B active parameters is now generally available in the Amazon SageMaker JumpStart model catalog. You can accelerate innovation and deliver tangible business value with Nemotron 3 Nano on Amazon Web Services (AWS) without having to manage model deployment complexities. You can power your generative AI applications with Nemotron capabilities using the managed deployment capabilities offered by SageMaker JumpStart.

Scale LLM fine-tuning with Hugging Face and Amazon SageMaker AI

In this post, we show how this integrated approach transforms enterprise LLM fine-tuning from a complex, resource-intensive challenge into a streamlined, scalable solution for achieving better model performance in domain-specific applications.

Manage Amazon SageMaker HyperPod clusters using the HyperPod CLI and SDK

In this post, we demonstrate how to use the CLI and the SDK to create and manage SageMaker HyperPod clusters in your AWS account. We walk through a practical example and dive deeper into the user workflow and parameter choices.

Evaluate generative AI models with an Amazon Nova rubric-based LLM judge on Amazon SageMaker AI (Part 2)

In this post, we explore the Amazon Nova rubric-based judge feature: what a rubric-based judge is, how the judge is trained, what metrics to consider, and how to calibrate the judge. We chare notebook code of the Amazon Nova rubric-based LLM-as-a-judge methodology to evaluate and compare the outputs of two different LLMs using SageMaker training jobs.

Evaluating generative AI models with Amazon Nova LLM-as-a-Judge on Amazon SageMaker AI

Evaluating the performance of large language models (LLMs) goes beyond statistical metrics like perplexity or bilingual evaluation understudy (BLEU) scores. For most real-world generative AI scenarios, it’s crucial to understand whether a model is producing better outputs than a baseline or an earlier iteration. This is especially important for applications such as summarization, content generation, […]

Simplify ModelOps with Amazon SageMaker AI Projects using Amazon S3-based templates

This post explores how you can use Amazon S3-based templates to simplify ModelOps workflows, walk through the key benefits compared to using Service Catalog approaches, and demonstrates how to create a custom ModelOps solution that integrates with GitHub and GitHub Actions—giving your team one-click provisioning of a fully functional ML environment.

Advanced fine-tuning techniques for multi-agent orchestration: Patterns from Amazon at scale

In this post, we show you how fine-tuning enabled a 33% reduction in dangerous medication errors (Amazon Pharmacy), engineering 80% human effort reduction (Amazon Global Engineering Services), and content quality assessments improving 77% to 96% accuracy (Amazon A+). This post details the techniques behind these outcomes: from foundational methods like Supervised Fine-Tuning (SFT) (instruction tuning), and Proximal Policy Optimization (PPO), to Direct Preference Optimization (DPO) for human alignment, to cutting-edge reasoning optimizations such as Grouped-based Reinforcement Learning from Policy Optimization (GRPO), Direct Advantage Policy Optimization (DAPO), and Group Sequence Policy Optimization (GSPO) purpose-built for agentic systems.

From beginner to champion: A student’s journey through the AWS AI League ASEAN finals

The AWS AI League, launched by Amazon Web Services (AWS), expanded its reach to the Association of Southeast Asian Nations (ASEAN) last year, welcoming student participants from Singapore, Indonesia, Malaysia, Thailand, Vietnam, and the Philippines. In this blog post, you’ll hear directly from the AWS AI League champion, Blix D. Foryasen, as he shares his reflection on the challenges, breakthroughs, and key lessons discovered throughout the competition.

How Omada Health scaled patient care by fine-tuning Llama models on Amazon SageMaker AI

This post is co-written with Sunaina Kavi, AI/ML Product Manager at Omada Health. Omada Health, a longtime innovator in virtual healthcare delivery, launched a new nutrition experience in 2025, featuring OmadaSpark, an AI agent trained with robust clinical input that delivers real-time motivational interviewing and nutrition education. It was built on AWS. OmadaSpark was designed […]