AWS Machine Learning Blog
Category: Amazon SageMaker
Create a multimodal chatbot tailored to your unique dataset with Amazon Bedrock FMs
In this post, we show how to create a multimodal chat assistant on Amazon Web Services (AWS) using Amazon Bedrock models, where users can submit images and questions, and text responses will be sourced from a closed set of proprietary documents.
How Indeed builds and deploys fine-tuned LLMs on Amazon SageMaker
In this post, we describe how using the capabilities of Amazon SageMaker has accelerated Indeed’s AI research, development velocity, flexibility, and overall value in our pursuit of using Indeed’s unique and vast data to leverage advanced LLMs.
Improve LLM application robustness with Amazon Bedrock Guardrails and Amazon Bedrock Agents
In this post, we demonstrate how Amazon Bedrock Guardrails can improve the robustness of the agent framework. We are able to stop our chatbot from responding to non-relevant queries and protect personal information from our customers, ultimately improving the robustness of our agentic implementation with Amazon Bedrock Agents.
Efficient Pre-training of Llama 3-like model architectures using torchtitan on Amazon SageMaker
In this post, we collaborate with the team working on PyTorch at Meta to showcase how the torchtitan library accelerates and simplifies the pre-training of Meta Llama 3-like model architectures. We showcase the key features and capabilities of torchtitan such as FSDP2, torch.compile integration, and FP8 support that optimize the training efficiency.
Time series forecasting with Amazon SageMaker AutoML
In this blog post, we explore a comprehensive approach to time series forecasting using the Amazon SageMaker AutoMLV2 Software Development Kit (SDK). SageMaker AutoMLV2 is part of the SageMaker Autopilot suite, which automates the end-to-end machine learning workflow from data preparation to model deployment.
How Aviva built a scalable, secure, and reliable MLOps platform using Amazon SageMaker
In this post, we describe how Aviva built a fully serverless MLOps platform based on the AWS Enterprise MLOps Framework and Amazon SageMaker to integrate DevOps best practices into the ML lifecycle. This solution establishes MLOps practices to standardize model development, streamline ML model deployment, and provide consistent monitoring.
Visier’s data science team boosts their model output 10 times by migrating to Amazon SageMaker
In this post, we learn how Visier was able to boost their model output by 10 times, accelerate innovation cycles, and unlock new opportunities using Amazon SageMaker.
Import a question answering fine-tuned model into Amazon Bedrock as a custom model
In this post, we provide a step-by-step approach of fine-tuning a Mistral model using SageMaker and import it into Amazon Bedrock using the Custom Import Model feature.
Using task-specific models from AI21 Labs on AWS
In this blog post, we will show you how to leverage AI21 Labs’ Task-Specific Models (TSMs) on AWS to enhance your business operations. You will learn the steps to subscribe to AI21 Labs in the AWS Marketplace, set up a domain in Amazon SageMaker, and utilize AI21 TSMs via SageMaker JumpStart.
How Northpower used computer vision with AWS to automate safety inspection risk assessments
In this post, we share how Northpower has worked with their technology partner Sculpt to reduce the effort and carbon required to identify and remediate public safety risks. Specifically, we cover the computer vision and artificial intelligence (AI) techniques used to combine datasets into a list of prioritized tasks for field teams to investigate and mitigate.