AWS Machine Learning Blog

Category: Amazon SageMaker

Serving PyTorch models in production with the Amazon SageMaker native TorchServe integration

In April 2020, AWS and Facebook announced the launch of TorchServe to allow researches and machine learning (ML) developers from the PyTorch community to bring their models to production more quickly and without needing to write custom code. TorchServe is an open-source project that answers the industry question of how to go from a notebook […]

Read More

Activity detection on a live video stream with Amazon SageMaker

Live video streams are continuously generated across industries including media and entertainment, retail, and many more. Live events like sports, music, news, and other special events are broadcast for viewers on TV and other online streaming platforms. AWS customers increasingly rely on machine learning (ML) to generate actionable insights in real time and deliver an […]

Read More

Reducing training time with Apache MXNet and Horovod on Amazon SageMaker

Amazon SageMaker is a fully managed service that provides every developer and data scientist with the ability to build, train, and deploy machine learning (ML) models quickly. Amazon SageMaker removes the heavy lifting from each step of the ML process to make it easier to develop high-quality models. As datasets continue to increase in size, […]

Read More

Using the Amazon SageMaker Studio Image Build CLI to build container images from your Studio notebooks

The new Amazon SageMaker Studio Image Build convenience package allows data scientists and developers to easily build custom container images from your Studio notebooks via a new CLI. The new CLI eliminates the need to manually set up and connect to Docker build environments for building container images in Amazon SageMaker Studio. Amazon SageMaker Studio […]

Read More

Right-sizing resources and avoiding unnecessary costs in Amazon SageMaker

Amazon SageMaker is a fully managed service that allows you to build, train, deploy, and monitor machine learning (ML) models. Its modular design allows you to pick and choose the features that suit your use cases at different stages of the ML lifecycle. Amazon SageMaker offers capabilities that abstract the heavy lifting of infrastructure management […]

Read More

Automated monitoring of your machine learning models with Amazon SageMaker Model Monitor and sending predictions to human review workflows using Amazon A2I

When machine learning (ML) is deployed in production, monitoring the model is important for maintaining the quality of predictions. Although the statistical properties of the training data are known in advance, real-life data can gradually deviate over time and impact the prediction results of your model, a phenomenon known as data drift. Detecting these conditions […]

Read More

Visualizing TensorFlow training jobs with TensorBoard

TensorBoard is an open source toolkit for TensorFlow users that allows you to visualize a wide range of useful information about your model, from model graphs; to loss, accuracy, or custom metrics; to embedding projections, images, and histograms of weights and biases. This post demonstrates how to use TensorBoard with Amazon SageMaker training jobs, write […]

Read More

Building a customized recommender system in Amazon SageMaker

Recommender systems help you tailor customer experiences on online platforms. Amazon Personalize is an artificial intelligence and machine learning service that specializes in developing recommender system solutions. It automatically examines the data, performs feature and algorithm selection, optimizes the model based on your data, and deploys and hosts the model for real-time recommendation inference. However, […]

Read More

The fastest driver in Formula 1

This blog post was co-authored, and includes an introduction, by Rob Smedley, Director of Data Systems at Formula 1 Formula 1 (F1) racing is the most complex sport in the world. It is the blended perfection of human and machine that create the winning formula. It is this blend that makes F1 racing, or more […]

Read More

Accessing data sources from Amazon SageMaker R kernels

Amazon SageMaker notebooks now support R out-of-the-box, without needing you to manually install R kernels on the instances. Also, the notebooks come pre-installed with the reticulate library, which offers an R interface for the Amazon SageMaker Python SDK and enables you to invoke Python modules from within an R script. You can easily run machine […]

Read More