Artificial Intelligence
Category: Foundational (100)
Amazon SageMaker AI in 2025, a year in review part 1: Flexible Training Plans and improvements to price performance for inference workloads
In 2025, Amazon SageMaker AI saw dramatic improvements to core infrastructure offerings along four dimensions: capacity, price performance, observability, and usability. In this series of posts, we discuss these various improvements and their benefits. In Part 1, we discuss capacity improvements with the launch of Flexible Training Plans. We also describe improvements to price performance for inference workloads. In Part 2, we discuss enhancements made to observability, model customization, and model hosting.
Amazon SageMaker AI in 2025, a year in review part 2: Improved observability and enhanced features for SageMaker AI model customization and hosting
In 2025, Amazon SageMaker AI made several improvements designed to help you train, tune, and host generative AI workloads. In Part 1 of this series, we discussed Flexible Training Plans and price performance improvements made to inference components. In this post, we discuss enhancements made to observability, model customization, and model hosting. These improvements facilitate a whole new class of customer use cases to be hosted on SageMaker AI.
Responsible AI design in healthcare and life sciences
In this post, we explore the critical design considerations for building responsible AI systems in healthcare and life sciences, focusing on establishing governance mechanisms, transparency artifacts, and security measures that ensure safe and effective generative AI applications. The discussion covers essential policies for mitigating risks like confabulation and bias while promoting trust, accountability, and patient safety throughout the AI development lifecycle.
Oldcastle accelerates document processing with Amazon Bedrock
This post explores how Oldcastle partnered with AWS to transform their document processing workflow using Amazon Bedrock with Amazon Textract. We discuss how Oldcastle overcame the limitations of their previous OCR solution to automate the processing of hundreds of thousands of POD documents each month, dramatically improving accuracy while reducing manual effort.
Demystifying Amazon Bedrock Pricing for a Chatbot Assistant
In this post, we’ll look at Amazon Bedrock pricing through the lens of a practical, real-world example: building a customer service chatbot. We’ll break down the essential cost components, walk through capacity planning for a mid-sized call center implementation, and provide detailed pricing calculations across different foundation models.
Deploy conversational agents with Vonage and Amazon Nova Sonic
In this post, we explore how developers can integrate Amazon Nova Sonic with the Vonage communications service to build responsive, natural-sounding voice experiences in real time. By combining the Vonage Voice API with the low-latency and expressive speech capabilities of Amazon Nova Sonic, businesses can deploy AI voice agents that deliver more human-like interactions than traditional voice interfaces. These agents can be used as customer support, virtual assistants, and more.
Building intelligent AI voice agents with Pipecat and Amazon Bedrock – Part 2
In Part 1 of this series, you learned how you can use the combination of Amazon Bedrock and Pipecat, an open source framework for voice and multimodal conversational AI agents to build applications with human-like conversational AI. You learned about common use cases of voice agents and the cascaded models approach, where you orchestrate several components to build your voice AI agent. In this post (Part 2), you explore how to use speech-to-speech foundation model, Amazon Nova Sonic, and the benefits of using a unified model.
Build generative AI solutions with Amazon Bedrock
In this post, we show you how to build generative AI applications on Amazon Web Services (AWS) using the capabilities of Amazon Bedrock, highlighting how Amazon Bedrock can be used at each step of your generative AI journey. This guide is valuable for both experienced AI engineers and newcomers to the generative AI space, helping you use Amazon Bedrock to its fullest potential.
How Netsertive built a scalable AI assistant to extract meaningful insights from real-time data using Amazon Bedrock and Amazon Nova
In this post, we show how Netsertive introduced a generative AI-powered assistant into MLX, using Amazon Bedrock and Amazon Nova, to bring their next generation of the platform to life.
Building intelligent AI voice agents with Pipecat and Amazon Bedrock – Part 1
In this series of posts, you will learn how to build intelligent AI voice agents using Pipecat, an open-source framework for voice and multimodal conversational AI agents, with foundation models on Amazon Bedrock. It includes high-level reference architectures, best practices and code samples to guide your implementation.









