Artificial Intelligence and Machine Learning

Category: Foundational (100)

Build generative AI solutions with Amazon Bedrock

In this post, we show you how to build generative AI applications on Amazon Web Services (AWS) using the capabilities of Amazon Bedrock, highlighting how Amazon Bedrock can be used at each step of your generative AI journey. This guide is valuable for both experienced AI engineers and newcomers to the generative AI space, helping you use Amazon Bedrock to its fullest potential.

AWS architecture for Netsertive showcasing EKS, Aurora, Bedrock integration with insights management and call reporting workflow

How Netsertive built a scalable AI assistant to extract meaningful insights from real-time data using Amazon Bedrock and Amazon Nova

In this post, we show how Netsertive introduced a generative AI-powered assistant into MLX, using Amazon Bedrock and Amazon Nova, to bring their next generation of the platform to life.

Building intelligent AI voice agents with Pipecat and Amazon Bedrock

Building intelligent AI voice agents with Pipecat and Amazon Bedrock – Part 1

In this series of posts, you will learn how to build intelligent AI voice agents using Pipecat, an open-source framework for voice and multimodal conversational AI agents, with foundation models on Amazon Bedrock. It includes high-level reference architectures, best practices and code samples to guide your implementation.

InterVision accelerates AI development using AWS LLM League and Amazon SageMaker AI

This post demonstrates how AWS LLM League’s gamified enablement accelerates partners’ practical AI development capabilities, while showcasing how fine-tuning smaller language models can deliver cost-effective, specialized solutions for specific industry needs.

Racing beyond DeepRacer: Debut of the AWS LLM League

The AWS LLM League was designed to lower the barriers to entry in generative AI model customization by providing an experience where participants, regardless of their prior data science experience, could engage in fine-tuning LLMs. Using Amazon SageMaker JumpStart, attendees were guided through the process of customizing LLMs to address real business challenges adaptable to their domain.

How AWS Sales uses generative AI to streamline account planning

Every year, AWS Sales personnel draft in-depth, forward looking strategy documents for established AWS customers. These documents help the AWS Sales team to align with our customer growth strategy and to collaborate with the entire sales team on long-term growth ideas for AWS customers. In this post, we showcase how the AWS Sales product team built the generative AI account plans draft assistant.

Revolutionizing customer service: MaestroQA’s integration with Amazon Bedrock for actionable insight

In this post, we dive deeper into one of MaestroQA’s key features—conversation analytics, which helps support teams uncover customer concerns, address points of friction, adapt support workflows, and identify areas for coaching through the use of Amazon Bedrock. We discuss the unique challenges MaestroQA overcame and how they use AWS to build new features, drive customer insights, and improve operational inefficiencies.

Architecture of AWS Field Advisor using Amazon Q Business

How AWS sales uses Amazon Q Business for customer engagement

In April 2024, we launched our AI sales assistant, which we call Field Advisor, making it available to AWS employees in the Sales, Marketing, and Global Services organization, powered by Amazon Q Business. Since that time, thousands of active users have asked hundreds of thousands of questions through Field Advisor, which we have embedded in our customer relationship management (CRM) system, as well as through a Slack application.

Figure 2: Depicting high level architecture of Tecton & SageMaker showing end-to-end feature lifecycle

Real value, real time: Production AI with Amazon SageMaker and Tecton

In this post, we discuss how Amazon SageMaker and Tecton work together to simplify the development and deployment of production-ready AI applications, particularly for real-time use cases like fraud detection. The integration enables faster time to value by abstracting away complex engineering tasks, allowing teams to focus on building features and use cases while providing a streamlined framework for both offline training and online serving of ML models.