Artificial Intelligence

Introducing the Amazon Bedrock AgentCore Code Interpreter

In this post, we introduce the Amazon Bedrock AgentCore Code Interpreter, a fully managed service that enables AI agents to securely execute code in isolated sandbox environments. We discuss how the AgentCore Code Interpreter helps solve challenges around security, scalability, and infrastructure management when deploying AI agents that need computational capabilities.

Building AIOps with Amazon Q Developer CLI and MCP Server

In this post, we discuss how to implement a low-code no-code AIOps solution that helps organizations monitor, identify, and troubleshoot operational events while maintaining their security posture. We show how these technologies work together to automate repetitive tasks, streamline incident response, and enhance operational efficiency across your organization.

Containerize legacy Spring Boot application using Amazon Q Developer CLI and MCP server

In this post, you’ll learn how you can use Amazon Q Developer command line interface (CLI) with Model Context Protocol (MCP) servers integration to modernize a legacy Java Spring Boot application running on premises and then migrate it to Amazon Web Services (AWS) by deploying it on Amazon Elastic Kubernetes Service (Amazon EKS).

Introducing AWS Batch Support for Amazon SageMaker Training jobs

AWS Batch now seamlessly integrates with Amazon SageMaker Training jobs. In this post, we discuss the benefits of managing and prioritizing ML training jobs to use hardware efficiently for your business. We also walk you through how to get started using this new capability and share suggested best practices, including the use of SageMaker training plans.

Structured outputs with Amazon Nova: A guide for builders

We launched constrained decoding to provide reliability when using tools for structured outputs. Now, tools can be used with Amazon Nova foundation models (FMs) to extract data based on complex schemas, reducing tool use errors by over 95%. In this post, we explore how you can use Amazon Nova FMs for structured output use cases.

Architecture

AI agents unifying structured and unstructured data: Transforming support analytics and beyond with Amazon Q Plugins

Learn how to enhance Amazon Q with custom plugins to combine semantic search capabilities with precise analytics for AWS Support data. This solution enables more accurate answers to analytical questions by integrating structured data querying with RAG architecture, allowing teams to transform raw support cases and health events into actionable insights. Discover how this enhanced architecture delivers exact numerical analysis while maintaining natural language interactions for improved operational decision-making.

Strands Agents SDK: A technical deep dive into agent architectures and observability

In this post, we first introduce the Strands Agents SDK and its core features. Then we explore how it integrates with AWS environments for secure, scalable deployments, and how it provides rich observability for production use. Finally, we discuss practical use cases, and present a step-by-step example to illustrate Strands in action.

Build dynamic web research agents with the Strands Agents SDK and Tavily

In this post, we introduce how to combine Strands Agents with Tavily’s purpose-built web intelligence API, to create powerful research agents that excel at complex information gathering tasks while maintaining the security and compliance standards required for enterprise deployment.

Slide presentation showing an example output

Automate the creation of handout notes using Amazon Bedrock Data Automation

In this post, we show how you can build an automated, serverless solution to transform webinar recordings into comprehensive handouts using Amazon Bedrock Data Automation for video analysis. We walk you through the implementation of Amazon Bedrock Data Automation to transcribe and detect slide changes, as well as the use of Amazon Bedrock foundation models (FMs) for transcription refinement, combined with custom AWS Lambda functions orchestrated by AWS Step Functions.