AWS Machine Learning Blog
Build cost-effective RAG applications with Binary Embeddings in Amazon Titan Text Embeddings V2, Amazon OpenSearch Serverless, and Amazon Bedrock Knowledge Bases
Today, we are happy to announce the availability of Binary Embeddings for Amazon Titan Text Embeddings V2 in Amazon Bedrock Knowledge Bases and Amazon OpenSearch Serverless. This post summarizes the benefits of this new binary vector support and gives you information on how you can get started.
Automate cloud security vulnerability assessment and alerting using Amazon Bedrock
This post demonstrates a proactive approach for security vulnerability assessment of your accounts and workloads, using Amazon GuardDuty, Amazon Bedrock, and other AWS serverless technologies. This approach aims to identify potential vulnerabilities proactively and provide your users with timely alerts and recommendations, avoiding reactive escalations and other damages.
DXC transforms data exploration for their oil and gas customers with LLM-powered tools
In this post, we show you how DXC and AWS collaborated to build an AI assistant using large language models (LLMs), enabling users to access and analyze different data types from a variety of data sources. The AI assistant is powered by an intelligent agent that routes user questions to specialized tools that are optimized for different data types such as text, tables, and domain-specific formats. It uses the LLM’s ability to understand natural language, write code, and reason about conversational context.
How MSD uses Amazon Bedrock to translate natural language into SQL for complex healthcare databases
MSD, a leading pharmaceutical company, collaborates with AWS to implement a powerful text-to-SQL generative AI solution using Amazon Bedrock and Anthropic’s Claude 3.5 Sonnet model. This approach streamlines data extraction from complex healthcare databases like DE-SynPUF, enabling analysts to generate SQL queries from natural language questions. The solution addresses challenges such as coded columns, non-intuitive names, and ambiguous queries, significantly reducing query time and democratizing data access.
Generate AWS Resilience Hub findings in natural language using Amazon Bedrock
This blog post discusses a solution that combines AWS Resilience Hub and Amazon Bedrock to generate architectural findings in natural language. By using the capabilities of Resilience Hub and Amazon Bedrock, you can share findings with C-suite executives, engineers, managers, and other personas within your corporation to provide better visibility over maintaining a resilient architecture.
Generate and evaluate images in Amazon Bedrock with Amazon Titan Image Generator G1 v2 and Anthropic Claude 3.5 Sonnet
In this post, we demonstrate how to interact with the Amazon Titan Image Generator G1 v2 model on Amazon Bedrock to generate an image. Then, we show you how to use Anthropic’s Claude 3.5 Sonnet on Amazon Bedrock to describe it, evaluate it with a score from 1–10, explain the reason behind the given score, and suggest improvements to the image.
How InsuranceDekho transformed insurance agent interactions using Amazon Bedrock and generative AI
In this post, we explain how InsuranceDekho harnessed the power of generative AI using Amazon Bedrock and Anthropic’s Claude to provide responses to customer queries on policy coverages, exclusions, and more. This let our customer care agents and POSPs confidently help our customers understand the policies without reaching out to insurance subject matter experts (SMEs) or memorizing complex plans while providing sales and after-sales services. The use of this solution has improved sales, cross-selling, and overall customer service experience.
Considerations for addressing the core dimensions of responsible AI for Amazon Bedrock applications
In this post, we introduce the core dimensions of responsible AI and explore considerations and strategies on how to address these dimensions for Amazon Bedrock applications.
From RAG to fabric: Lessons learned from building real-world RAGs at GenAIIC – Part 2
This post focuses on doing RAG on heterogeneous data formats. We first introduce routers, and how they can help managing diverse data sources. We then give tips on how to handle tabular data and will conclude with multimodal RAG, focusing specifically on solutions that handle both text and image data.
Cohere Embed multimodal embeddings model is now available on Amazon SageMaker JumpStart
The Cohere Embed multimodal embeddings model is now generally available on Amazon SageMaker JumpStart. This model is the newest Cohere Embed 3 model, which is now multimodal and capable of generating embeddings from both text and images, enabling enterprises to unlock real value from their vast amounts of data that exist in image form. In this post, we discuss the benefits and capabilities of this new model with some examples.