AWS Machine Learning Blog

Tag: Amazon Sagemaker

Running fast.ai notebooks with Amazon SageMaker

fast.ai is an organization dedicated to making the power of deep learning accessible to all. They have developed a popular open source deep learning framework called fast.ai. This technology is based on the deep learning library PyTorch, which is focused on usability and allows users to create state-of-the-art models with just a few lines of code in domains […]

Read More

Build a March Madness predictor application supported by Amazon SageMaker

What an opening round of March Madness basketball tournament games! We had a buzzer beater, some historic upsets, and exciting games throughout. The model built in our first blog post (Part 1) pointed out a few likely upset candidates (Loyola IL, Butler), but did not see some coming (Marshall, UMBC). I’m sure there will be […]

Read More

Create a Word-Pronunciation sequence-to-sequence model using Amazon SageMaker

Amazon SageMaker seq2seq offers you a very simple way to make use of the state-of-the-art encoder-decoder architecture (including the attention mechanism) for your sequence to sequence tasks. You just need to prepare your sequence data in recordio-protobuf format and your vocabulary mapping files in JSON format. Then you need to upload them to Amazon Simple […]

Read More

Customize your Amazon SageMaker notebook instances with lifecycle configurations and the option to disable internet access

Amazon SageMaker provides fully managed instances running Jupyter Notebooks for data exploration and preprocessing. Customers really appreciate how easy it is to launch a pre-configured notebook instance with just one click. Today, we are making them more customizable by providing two new options: lifecycle configuration that helps automate the process of customizing your notebook instance, […]

Read More

Predict March Madness using Amazon Sagemaker

It’s mid-March and in the United States that can mean only one thing – it’s time for March Madness! Every year countless people fill out a bracket trying to pick which college basketball team will take it all. Do you have a favorite team to win in 2018? In this blog post, we’ll show you […]

Read More

Use Amazon CloudWatch custom metrics for real-time monitoring of Amazon Sagemaker model performance

The training and learning process of deep learning (DL) models can be expensive and time consuming. It’s important for data scientists to monitor the model metrics, such as the training accuracy, training loss, validation accuracy, and validation loss, and make informed decisions based on those metrics. In this blog post, I’ll show you how to […]

Read More

Deploy Gluon models to AWS DeepLens using a simple Python API

Today we are excited to announce that you can deploy your custom models trained using Gluon to your AWS DeepLens. Gluon is an open source deep learning interface which allows developers of all skill levels to prototype, build, train, and deploy sophisticated machine learning models for the cloud, devices at the edge, and mobile apps. […]

Read More

Train and host Scikit-Learn models in Amazon SageMaker by building a Scikit Docker container

Introduced at re:Invent 2017, Amazon SageMaker provides a serverless data science environment to build, train, and deploy machine learning models at scale. Customers also have the ability to work with frameworks they find most familiar, such as Scikit learn. In this blog post, we’ll accomplish two goals: First, we’ll give you a high-level overview of […]

Read More

Amazon SageMaker support for TensorFlow 1.5, MXNet 1.0, and CUDA 9

Amazon SageMaker pre-built deep learning framework containers now support TensorFlow 1.5 and Apache MXNet 1.0, both of which take advantage of CUDA 9 optimizations for faster performance on SageMaker ml.p3 instances. In addition to performance benefits, this provides access to updated features such as Eager execution in TensorFlow and advanced indexing for NDArrays in MXNet. More […]

Read More

Build an online compound solubility prediction workflow with AWS Batch and Amazon SageMaker

Machine learning (ML) methods for the field of computational chemistry are growing at an accelerated rate. Easy access to open-source solvers (such as TensorFlow and Apache MXNet), toolkits (such as RDKit cheminformatics software), and open-scientific initiatives (such as DeepChem) makes it easy to use these frameworks in daily research. In the field of chemical informatics, many […]

Read More