Apache MXNet on AWS

Build machine learning applications that train quickly and run anywhere

Apache MXNet is a fast and scalable training and inference framework with an easy-to-use, concise API for machine learning.

MXNet includes the Gluon interface that allows developers of all skill levels to get started with deep learning on the cloud, on edge devices, and on mobile apps. In just a few lines of Gluon code, you can build linear regression, convolutional networks and recurrent LSTMs for object detection, speech recognition, recommendation, and personalization.

Get started using MXNet and Gluon on AWS by launching the AWS Deep Learning AMI, available for both Amazon Linux and Ubuntu.

Contribute to the Apache MXNet Project

Grab sample code, notebooks, and tutorial content at the GitHub project page.

social-media-github

Benefits of deep learning using MXNet

Ease-of-Use with Gluon

MXNet’s Gluon library provides a high-level interface that makes it easy to prototype, train, and deploy deep learning models without sacrificing training speed. Gluon offers high-level abstractions for predefined layers, loss functions, and optimizers. It also provides a flexible structure that is intuitive to work with and easy to debug.

Greater Performance

Deep learning workloads can be distributed across multiple GPUs with near-linear scalability, which means that extremely large projects can be handled in less time. As well, scaling is automatic depending on the number of GPUs in a cluster. Developers also save time and increase productivity by running serverless and batch-based inferencing.

For IoT & the Edge

In addition to handling multi-GPU training and deployment of complex models in the cloud, MXNet produces lightweight neural network model representations that can run on lower-powered edge devices like a Raspberry Pi, smartphone, or laptop and process data remotely in real-time.

Flexibility & Choice

MXNet supports a broad set of programming languages—including C++, JavaScript, Python, R, Matlab, Julia, Scala, and Go—so you can get started with languages that you already know. On the backend, however, all code is compiled in C++ for the greatest performance regardless of what language is used to build the models.

MXNet case studies

There are over 400 contributors to the MXNet project including developers from Amazon, Apple, Samsung, and Microsoft. Learn more about the MXNet community's deep learning projects.

Blog posts & articles

seb-coreML

Blog Title: Bring Machine Learning to iOS apps using Apache MXNet and Apple Core ML
Blog Author: Sebastien Menant & Pracheer Gupta
Date: 6 September, 2017

mu_li_100
Blog Author: Mu Li
Date: 6 October, 2017

Get started with MXNet on AWS

icon1

Sign up for an AWS account

Instantly get access to the AWS Free Tier.

icon2

Get the AWS Deep Learning AMI

Follow this step-by-step guide to launch the Deep Learning AMI. 

icon3

Start building with MXNet

Start building with these simple tutorials.

Explore deep learning resources

Contribute to the MXNet Community

Join the Apache MXNet open-source community and collaborate on the latest deep learning projects. Grab sample code, notebooks, and tutorial content. More >

Ready to get started?
Sign up
Have more questions?
Contact us