AWS Big Data Blog
Achieve higher query throughput: Auto scaling in Amazon OpenSearch Serverless now supports shard replica scaling
Amazon OpenSearch Serverless is the serverless option for Amazon OpenSearch Service that makes it simple for you to run search and analytics workloads without having to think about infrastructure management. We recently announced new enhancements to autoscaling in OpenSearch Serverless that scales capacity automatically in response to your query loads. At launch, OpenSearch Serverless supported […]
How healthcare organizations can analyze and create insights using price transparency data
In recent years, there has been a growing emphasis on price transparency in the healthcare industry. Under the Transparency in Coverage (TCR) rule, hospitals and payors to publish their pricing data in a machine-readable format. With this move, patients can compare prices between different hospitals and make informed healthcare decisions. For more information, refer to […]
Modernize a legacy real-time analytics application with Amazon Managed Service for Apache Flink
In this post, we discuss challenges with relational databases when used for real-time analytics and ways to mitigate them by modernizing the architecture with serverless AWS solutions. We introduce you to Amazon Managed Service for Apache Flink Studio and get started querying streaming data interactively using Amazon Kinesis Data Streams. We walk through a call center analytics solution that provides insights into the call center’s performance in near-real time through metrics that determine agent efficiency in handling calls in the queue. Key performance indicators (KPIs) of interest for a call center from a near-real-time platform could be calls waiting in the queue, highlighted in a performance dashboard within a few seconds of data ingestion from call center streams.
Automated data governance with AWS Glue Data Quality, sensitive data detection, and AWS Lake Formation
Data governance is the process of ensuring the integrity, availability, usability, and security of an organization’s data. Due to the volume, velocity, and variety of data being ingested in data lakes, it can get challenging to develop and maintain policies and procedures to ensure data governance at scale for your data lake. In this post, we showcase how to use AWS Glue with AWS Glue Data Quality, sensitive data detection transforms, and AWS Lake Formation tag-based access control to automate data governance.
Using AWS AppSync and AWS Lake Formation to access a secure data lake through a GraphQL API
Data lakes have been gaining popularity for storing vast amounts of data from diverse sources in a scalable and cost-effective way. As the number of data consumers grows, data lake administrators often need to implement fine-grained access controls for different user profiles. They might need to restrict access to certain tables or columns depending on […]
Simplify data transfer: Google BigQuery to Amazon S3 using Amazon AppFlow
In today’s data-driven world, the ability to effortlessly move and analyze data across diverse platforms is essential. Amazon AppFlow, a fully managed data integration service, has been at the forefront of streamlining data transfer between AWS services, software as a service (SaaS) applications, and now Google BigQuery. In this blog post, you explore the new Google BigQuery connector in Amazon AppFlow and discover how it simplifies the process of transferring data from Google’s data warehouse to Amazon Simple Storage Service (Amazon S3), providing significant benefits for data professionals and organizations, including the democratization of multi-cloud data access.
Define per-team resource limits for big data workloads using Amazon EMR Serverless
Customers face a challenge when distributing cloud resources between different teams running workloads such as development, testing, or production. The resource distribution challenge also occurs when you have different line-of-business users. The objective is not only to ensure sufficient resources be consistently available to production workloads and critical teams, but also to prevent adhoc jobs […]
Unlock data across organizational boundaries using Amazon DataZone – now generally available
We are excited to announce the general availability of Amazon DataZone. Amazon DataZone enables customers to discover, access, share, and govern data at scale across organizational boundaries, reducing the undifferentiated heavy lifting of making data and analytics tools accessible to everyone in the organization. With Amazon DataZone, data users like data engineers, data scientists, and data analysts can share and access […]
Automate legacy ETL conversion to AWS Glue using Cognizant Data and Intelligence Toolkit (CDIT) – ETL Conversion Tool
In this post, we describe how Cognizant’s Data & Intelligence Toolkit (CDIT)- ETL Conversion Tool can help you automatically convert legacy ETL code to AWS Glue quickly and effectively. We also describe the main steps involved, the supported features, and their benefits.
Query big data with resilience using Trino in Amazon EMR with Amazon EC2 Spot Instances for less cost
New enhancements in Trino with Amazon EMR provide improved resiliency for running ETL and batch workloads on Spot Instances with reduced costs. This post showcases the resilience of Amazon EMR with Trino using fault-tolerant configuration to run long-running queries on Spot Instances to save costs. We simulate Spot interruptions on Trino worker nodes by using AWS Fault Injection Simulator (AWS FIS).