Artificial Intelligence
Category: Compute
Using container images to run TensorFlow models in AWS Lambda
TensorFlow is an open-source machine learning (ML) library widely used to develop neural networks and ML models. Those models are usually trained on multiple GPU instances to speed up training, resulting in expensive training time and model sizes up to a few gigabytes. After they’re trained, these models are deployed in production to produce inferences. […]
Applying voice classification in an Amazon Connect telemedicine contact flow
Given the rising demand for fast and effective COVID-19 detection, customers are exploring the usage of respiratory sound data, like coughing, breathing, and counting, to automatically diagnose COVID-19 based on machine learning (ML) models. University of Cambridge researchers built a COVID-19 sound application and demonstrated that a simple binary ML classifier can classify healthy and […]
Machine learning on distributed Dask using Amazon SageMaker and AWS Fargate
As businesses around the world are embarking on building innovative solutions, we’re seeing a growing trend adopting data science workloads across various industries. Recently, we’ve seen a greater push towards reducing the friction between data engineers and data scientists. Data scientists are now enabled to run their experiments on their local machine and port to […]
Using container images to run PyTorch models in AWS Lambda
July 2024: This post was reviewed for accuracy. PyTorch is an open-source machine learning (ML) library widely used to develop neural networks and ML models. Those models are usually trained on multiple GPU instances to speed up training, resulting in expensive training time and model sizes up to a few gigabytes. After they’re trained, these […]
Model serving in Java with AWS Elastic Beanstalk made easy with Deep Java Library
Deploying your machine learning (ML) models to run on a REST endpoint has never been easier. Using AWS Elastic Beanstalk and Amazon Elastic Compute Cloud (Amazon EC2) to host your endpoint and Deep Java Library (DJL) to load your deep learning models for inference makes the model deployment process extremely easy to set up. Setting […]
Model serving made easier with Deep Java Library and AWS Lambda
Developing and deploying a deep learning model involves many steps: gathering and cleansing data, designing the model, fine-tuning model parameters, evaluating the results, and going through it again until a desirable result is achieved. Then comes the final step: deploying the model. AWS Lambda is one of the most cost effective service that lets you run code without […]
Intelligently connect to customers using machine learning in the COVID-19 pandemic
The pandemic has changed how people interact, how we receive information, and how we get help. It has shifted much of what used to happen in-person to online. Many of our customers are using machine learning (ML) technology to facilitate that transition, from new remote cloud contact centers, to chatbots, to more personalized engagements online. […]
Training and serving H2O models using Amazon SageMaker
Model training and serving steps are two essential pieces of a successful end-to-end machine learning (ML) pipeline. These two steps often require different software and hardware setups to provide the best mix for a production environment. Model training is optimized for a low-cost, feasible total run duration, scientific flexibility, and model interpretability objectives, whereas model […]
Building a medical image search platform on AWS
Improving radiologist efficiency and preventing burnout is a primary goal for healthcare providers. A nationwide study published in Mayo Clinic Proceedings in 2015 showed radiologist burnout percentage at a concerning 61% [1]. In additon, the report concludes that “burnout and satisfaction with work-life balance in US physicians worsened from 2011 to 2014. More than half […]
Join AWS and NVIDIA at GTC, October 5–9
Starting Monday, October 5, 2020, the NVIDIA GPU Technology Conference (GTC) is offering online sessions for you to learn AWS best practices to accomplish your machine learning (ML), virtual workstations, high performance computing (HPC), and internet of things (IoT) goals faster and more easily. Amazon Elastic Compute Cloud (Amazon EC2) instances powered by NVIDIA GPUs […]






