Artificial Intelligence

Category: Advanced (300)

Detect fraud in mobile-oriented businesses using GrabDefence device intelligence and Amazon Fraud Detector

In this post, we present a solution that combines rich mobile device intelligence with customized machine learning (ML) modeling to help you catch fraudsters who exploit mobile apps. GrabDefence (GD), Grab’s proprietary fraud detection and prevention technology, and AWS have launched GDxAFD, a fraud detection solution tailored for mobile apps that integrates GD’s device intelligence […]

Metrics for evaluating content moderation in Amazon Rekognition and other content moderation services

Content moderation is the process of screening and monitoring user-generated content online. To provide a safe environment for both users and brands, platforms must moderate content to ensure that it falls within preestablished guidelines of acceptable behavior that are specific to the platform and its audience. When a platform moderates content, acceptable user-generated content (UGC) […]

Reduce cost and development time with Amazon SageMaker Pipelines local mode

Creating robust and reusable machine learning (ML) pipelines can be a complex and time-consuming process. Developers usually test their processing and training scripts locally, but the pipelines themselves are typically tested in the cloud. Creating and running a full pipeline during experimentation adds unwanted overhead and cost to the development lifecycle. In this post, we […]

Achieve four times higher ML inference throughput at three times lower cost per inference with Amazon EC2 G5 instances for NLP and CV PyTorch models

Amazon Elastic Compute Cloud (Amazon EC2) G5 instances are the first and only instances in the cloud to feature NVIDIA A10G Tensor Core GPUs, which you can use for a wide range of graphics-intensive and machine learning (ML) use cases. With G5 instances, ML customers get high performance and a cost-efficient infrastructure to train and […]

Solution overview

Build flexible and scalable distributed training architectures using Kubeflow on AWS and Amazon SageMaker

In this post, we demonstrate how Kubeflow on AWS (an AWS-specific distribution of Kubeflow) used with AWS Deep Learning Containers and Amazon Elastic File System (Amazon EFS) simplifies collaboration and provides flexibility in training deep learning models at scale on both Amazon Elastic Kubernetes Service (Amazon EKS) and Amazon SageMaker utilizing a hybrid architecture approach. […]

Build an AI-powered virtual agent for Genesys Cloud using QnABot and Amazon Lex

The rise of artificial intelligence technologies enables organizations to adopt and improve self-service capabilities in contact center operations to create a more proactive, timely, and effective customer experience. Voice bots, or conversational interactive voice response systems (IVR), use natural language processing (NLP) to understand customers’ questions and provide relevant answers. Businesses can automate responses to […]

Provision and manage ML environments with Amazon SageMaker Canvas using AWS CloudFormation, AWS CDK and AWS Service Catalog

June 2024: This blog post has been updated to reflect the updates in the architecture described. Additionally, support for CloudFormation templates has been added. The proliferation of machine learning (ML) across a wide range of use cases is becoming prevalent in every industry. However, this outpaces the increase in the number of ML practitioners who […]

How Amazon Search reduced ML inference costs by 85% with AWS Inferentia

Amazon’s product search engine indexes billions of products, serves hundreds of millions of customers worldwide, and is one of the most heavily used services in the world. The Amazon Search team develops machine learning (ML) technology that powers the Amazon.com search engine and helps customers search effortlessly. To deliver a great customer experience and operate […]

Improve transcription accuracy of customer-agent calls with custom vocabulary in Amazon Transcribe

Many AWS customers have been successfully using Amazon Transcribe to accurately, efficiently, and automatically convert their customer audio conversations to text, and extract actionable insights from them. These insights can help you continuously enhance the processes and products that directly improve the quality and experience for your customers. In many countries, such as India, English […]

Create a batch recommendation pipeline using Amazon Personalize with no code

With personalized content more likely to drive customer engagement, businesses continuously seek to provide tailored content based on their customer’s profile and behavior. Recommendation systems in particular seek to predict the preference an end-user would give to an item. Some common use cases include product recommendations on online retail stores, personalizing newsletters, generating music playlist […]