Artificial Intelligence

Category: Learning Levels

Benchmarking document information localization with Amazon Nova

This post demonstrates how to use foundation models (FMs) in Amazon Bedrock, specifically Amazon Nova Pro, to achieve high-accuracy document field localization while dramatically simplifying implementation. We show how these models can precisely locate and interpret document fields with minimal frontend effort, reducing processing errors and manual intervention.

Create a travel planning agentic workflow with Amazon Nova

In this post, we explore how to build a travel planning solution using AI agents. The agent uses Amazon Nova, which offers an optimal balance of performance and cost compared to other commercial LLMs. By combining accurate but cost-efficient Amazon Nova models with LangGraph orchestration capabilities, we create a practical travel assistant that can handle complex planning tasks while keeping operational costs manageable for production deployments.

Introducing Amazon Bedrock AgentCore Gateway: Transforming enterprise AI agent tool development

In this post, we discuss Amazon Bedrock AgentCore Gateway, a fully managed service that revolutionizes how enterprises connect AI agents with tools and services by providing a centralized tool server with unified interface for agent-tool communication. The service offers key capabilities including Security Guard, Translation, Composition, Target extensibility, Infrastructure Manager, and Semantic Tool Selection, while implementing sophisticated dual-sided security architecture for both inbound and outbound connections.

Building a RAG chat-based assistant on Amazon EKS Auto Mode and NVIDIA NIMs

In this post, we demonstrate the implementation of a practical RAG chat-based assistant using a comprehensive stack of modern technologies. The solution uses NVIDIA NIMs for both LLM inference and text embedding services, with the NIM Operator handling their deployment and management. The architecture incorporates Amazon OpenSearch Serverless to store and query high-dimensional vector embeddings for similarity search.

Deploy LLMs on Amazon EKS using vLLM Deep Learning Containers

In this post, we demonstrate how to deploy the DeepSeek-R1-Distill-Qwen-32B model using AWS DLCs for vLLMs on Amazon EKS, showcasing how these purpose-built containers simplify deployment of this powerful inference engine. This solution can help you solve the complex infrastructure challenges of deploying LLMs while maintaining performance and cost-efficiency.

How Indegene’s AI-powered social intelligence for life sciences turns social media conversations into insights

This post explores how Indegene’s Social Intelligence Solution uses advanced AI to help life sciences companies extract valuable insights from digital healthcare conversations. Built on AWS technology, the solution addresses the growing preference of HCPs for digital channels while overcoming the challenges of analyzing complex medical discussions on a scale.

Unlocking enhanced legal document review with Lexbe and Amazon Bedrock

In this post, Lexbe, a legal document review software company, demonstrates how they integrated Amazon Bedrock and other AWS services to transform their document review process, enabling legal professionals to instantly query and extract insights from vast volumes of case documents using generative AI. Through collaboration with AWS, Lexbe achieved significant improvements in recall rates, reaching up to 90% by December 2024, and developed capabilities for broad human-style reporting and deep automated inference across multiple languages.

AWS RAG API architecture diagram illustrating end-to-end query processing with knowledge base integration and LLM response generation

Demystifying Amazon Bedrock Pricing for a Chatbot Assistant

In this post, we’ll look at Amazon Bedrock pricing through the lens of a practical, real-world example: building a customer service chatbot. We’ll break down the essential cost components, walk through capacity planning for a mid-sized call center implementation, and provide detailed pricing calculations across different foundation models.

Automate enterprise workflows by integrating Salesforce Agentforce with Amazon Bedrock Agents

This post explores a practical collaboration, integrating Salesforce Agentforce with Amazon Bedrock Agents and Amazon Redshift, to automate enterprise workflows.