AWS Machine Learning Blog
Category: Amazon Simple Storage Service (S3)
Control data access to Amazon S3 from Amazon SageMaker Studio with Amazon S3 Access Grants
In this post, we demonstrate how to simplify data access to Amazon S3 from SageMaker Studio using S3 Access Grants, specifically for different user personas using IAM principals.
Making traffic lights more efficient with Amazon Rekognition
In this blog post, we show you how Amazon Rekognition can mitigate congestion at traffic intersections and reduce operations and maintenance costs.
Elevate customer experience through an intelligent email automation solution using Amazon Bedrock
In this post, we show you how to use Amazon Bedrock to automate email responses to customer queries. With our solution, you can identify the intent of customer emails and send an automated response if the intent matches your existing knowledge base or data sources. If the intent doesn’t have a match, the email goes to the support team for a manual response.
Implement web crawling in Amazon Bedrock Knowledge Bases
Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading artificial intelligence (AI) companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI. With […]
The Weather Company enhances MLOps with Amazon SageMaker, AWS CloudFormation, and Amazon CloudWatch
In this post, we share the story of how The Weather Company (TWCo) enhanced its MLOps platform using services such as Amazon SageMaker, AWS CloudFormation, and Amazon CloudWatch. TWCo data scientists and ML engineers took advantage of automation, detailed experiment tracking, integrated training, and deployment pipelines to help scale MLOps effectively. TWCo reduced infrastructure management time by 90% while also reducing model deployment time by 20%.
Set up cross-account Amazon S3 access for Amazon SageMaker notebooks in VPC-only mode using Amazon S3 Access Points
Advancements in artificial intelligence (AI) and machine learning (ML) are revolutionizing the financial industry for use cases such as fraud detection, credit worthiness assessment, and trading strategy optimization. To develop models for such use cases, data scientists need access to various datasets like credit decision engines, customer transactions, risk appetite, and stress testing. Managing appropriate […]
Implement real-time personalized recommendations using Amazon Personalize
February 9, 2024: Amazon Kinesis Data Firehose has been renamed to Amazon Data Firehose. Read the AWS What’s New post to learn more. At a basic level, Machine Learning (ML) technology learns from data to make predictions. Businesses use their data with an ML-powered personalization service to elevate their customer experience. This approach allows businesses […]
Reinventing a cloud-native federated learning architecture on AWS
In this blog, you will learn to build a cloud-native FL architecture on AWS. By using infrastructure as code (IaC) tools on AWS, you can deploy FL architectures with ease. Also, a cloud-native architecture takes full advantage of a variety of AWS services with proven security and operational excellence, thereby simplifying the development of FL.
Announcing Amazon S3 access point support for Amazon SageMaker Data Wrangler
In this post, we walk you through importing data from, and exporting data to, an S3 access point in SageMaker Data Wrangler.
Unlock insights from your Amazon S3 data with intelligent search
Amazon Kendra is an intelligent search service powered by machine learning (ML). Amazon Kendra reimagines enterprise search for your websites and applications so your employees and customers can easily find the content they’re looking for, even when it’s scattered across multiple locations and content repositories within your organization. Keywords or natural language questions can be […]