AWS Machine Learning Blog
Category: Amazon Simple Storage Service (S3)
Embodied AI Chess with Amazon Bedrock
In this post, we demonstrate Embodied AI Chess with Amazon Bedrock, bringing a new dimension to traditional chess through generative AI capabilities. Our setup features a smart chess board that can detect moves in real time, paired with two robotic arms executing those moves. Each arm is controlled by different FMs—base or custom. This physical implementation allows you to observe and experiment with how different generative AI models approach complex gaming strategies in real-world chess matches.
How Crexi achieved ML models deployment on AWS at scale and boosted efficiency
Commercial Real Estate Exchange, Inc. (Crexi), is a digital marketplace and platform designed to streamline commercial real estate transactions. In this post, we will review how Crexi achieved its business needs and developed a versatile and powerful framework for AI/ML pipeline creation and deployment. This customizable and scalable solution allows its ML models to be efficiently deployed and managed to meet diverse project requirements.
Multilingual content processing using Amazon Bedrock and Amazon A2I
This post outlines a custom multilingual document extraction and content assessment framework using a combination of Anthropic’s Claude 3 on Amazon Bedrock and Amazon A2I to incorporate human-in-the-loop capabilities.
Build a reverse image search engine with Amazon Titan Multimodal Embeddings in Amazon Bedrock and AWS managed services
In this post, you will learn how to extract key objects from image queries using Amazon Rekognition and build a reverse image search engine using Amazon Titan Multimodal Embeddings from Amazon Bedrock in combination with Amazon OpenSearch Serverless Service.
Control data access to Amazon S3 from Amazon SageMaker Studio with Amazon S3 Access Grants
In this post, we demonstrate how to simplify data access to Amazon S3 from SageMaker Studio using S3 Access Grants, specifically for different user personas using IAM principals.
Making traffic lights more efficient with Amazon Rekognition
In this blog post, we show you how Amazon Rekognition can mitigate congestion at traffic intersections and reduce operations and maintenance costs.
Elevate customer experience through an intelligent email automation solution using Amazon Bedrock
In this post, we show you how to use Amazon Bedrock to automate email responses to customer queries. With our solution, you can identify the intent of customer emails and send an automated response if the intent matches your existing knowledge base or data sources. If the intent doesn’t have a match, the email goes to the support team for a manual response.
Implement web crawling in Amazon Bedrock Knowledge Bases
Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading artificial intelligence (AI) companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI. With […]
The Weather Company enhances MLOps with Amazon SageMaker, AWS CloudFormation, and Amazon CloudWatch
In this post, we share the story of how The Weather Company (TWCo) enhanced its MLOps platform using services such as Amazon SageMaker, AWS CloudFormation, and Amazon CloudWatch. TWCo data scientists and ML engineers took advantage of automation, detailed experiment tracking, integrated training, and deployment pipelines to help scale MLOps effectively. TWCo reduced infrastructure management time by 90% while also reducing model deployment time by 20%.
Set up cross-account Amazon S3 access for Amazon SageMaker notebooks in VPC-only mode using Amazon S3 Access Points
Advancements in artificial intelligence (AI) and machine learning (ML) are revolutionizing the financial industry for use cases such as fraud detection, credit worthiness assessment, and trading strategy optimization. To develop models for such use cases, data scientists need access to various datasets like credit decision engines, customer transactions, risk appetite, and stress testing. Managing appropriate […]